This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

187376-Thumbnail Image.png
Description
Unmanned aerial vehicles (UAVs) have revolutionized various fields, but their use in dynamic environments is still limited due to safety concerns arising from sensor malfunctions and localization errors. Inspired by birds, which exhibit unparalleled maneuverability and adaptability to dynamic environments by synergizing mechanical compliance with control, this research focused on

Unmanned aerial vehicles (UAVs) have revolutionized various fields, but their use in dynamic environments is still limited due to safety concerns arising from sensor malfunctions and localization errors. Inspired by birds, which exhibit unparalleled maneuverability and adaptability to dynamic environments by synergizing mechanical compliance with control, this research focused on developing a new generation of bio-inspired soft/compliant UAVs with mechanical intelligence that can withstand collisions and enable aerial interaction. The proposed approach is to harness collision energies and switch into the next favorable configuration, which helps retain stability and successfully fly even in the presence of external forces. It investigated various types of active/passive reconfigurable UAVs to demonstrate this idea. The first approach looked into designs of compliant reconfigurable quadrotors by employing springs which can reduce their dimension under external forces, thereby sustaining 2D planar collision forces and enabling flights through narrow gaps in a squeeze-and-fly manner. Next, fabric-based soft UAVs made of pneumatic beams were successfully explored to design lightweight and collision-resilient quadrotors to demonstrate 3D collision-resilience and impact-based perching. This research contributes to thorough modeling of the unique dynamics of these reconfigurable quadrotors and proposes various adaptive and learning-based controllers for robust low-level tracking. Finally, these controllers were integrated into a novel collision-inclusive motion planning framework based-on optimal control theory to perform physical interaction tasks, such as contact-based navigation, mapping, and inspection. In essence, this research redefines safety for UAVs and expands their capabilities for contact-rich tasks.
ContributorsPatnaik, Karishma (Author) / Zhang, Wennlong (Thesis advisor) / Tsakalis, Konstantinos (Committee member) / Aukes, Daniel (Committee member) / Arizona State University (Publisher)
Created2023