This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171367-Thumbnail Image.png
Description
In recent years, the scientific community around the synthesis and processing of nanoporous metals is striving to integrate them into powder metallurgy processes such as additive manufacturing since it has a potential to fabricate 3D hierarchical high surface area electrodes for energy applications. Recent research in dealloying – a versatile

In recent years, the scientific community around the synthesis and processing of nanoporous metals is striving to integrate them into powder metallurgy processes such as additive manufacturing since it has a potential to fabricate 3D hierarchical high surface area electrodes for energy applications. Recent research in dealloying – a versatile method for synthesizing nanoporous metals – emphasized the need in understanding its process-structure relationships to independently control the relative density, ligament and pore sizes with good process reproducibly. In this dissertation, a new understanding of the dealloying process is presented for synthesizing (i) nanoporous gold thin-films and (ii) nanoporous Cu spherical powders with an emphasis on understanding variability in their process-structure relationships and process scalability. First, this work sheds the light on the nature of the dealloying front and its percolation along the grain boundaries in nanocrystalline gold-silver thin films by studying the early stages of ligament nucleation. Additionally, this work analyses its variability by investigating new process variables such as (i) equilibration time and (ii) precursor aging and their impacts in achieving process reproducibility. The correlation of relative density with ligament size is contextualized with state-of-the-art data mining research. Second, this work provides a new methodology for large scale production of nanoporous Cu powder and demonstrates its integration with powder casting to fabricate porous conductive electrode. By understanding the influence of etching solution concentration and titration methodology on the structure and composition of nanoporous Cu, it was possible to fabricate precipitate-free powders at high throughputs. Further, the nature of oxygen incorporation into porous Cu powder was studied as a function of surface-to-volume ratio of powder in atmospheric conditions. To consolidate powders into parts via open-die casting, this work harvests Ostwald Ripening phenomena associated with thermal coarsening in nanoporous metals to weld them at low temperatures (approximately one-third of its melting temperature). This work represents a major step towards the integration of nanoporous Cu feedstocks into additive manufacturing.
ContributorsNiauzorau, Stanislau (Author) / Azeredo, Bruno (Thesis advisor) / Sieradzki, Karl (Committee member) / Song, Kenan (Committee member) / Chawla, Nikhilesh (Committee member) / Arizona State University (Publisher)
Created2022
157730-Thumbnail Image.png
Description
As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original

As the microelectronics industry continues to decrease the size of solder joints, each joint will have to carry a greater current density, making atom diffusion due to current flow, electromigration (EM), a problem of ever-increasing severity. The rate of EM damage depends on current density, operating temperature, and the original microstructure of the solder joint, including void volume, grain orientation, and grain size. While numerous studies have investigated the post-mortem effects of EM and have tested a range of current densities and temperatures, none have been able to analyze how the same joint evolves from its initial to final microstructure. This thesis focuses on the study of EM, thermal aging, and thermal cycling in Sn-rich solder joints. Solder joints were either of controlled microstructure and orientation or had trace alloying element additions. Sn grain orientation has been linked to a solder joints’ susceptibility to EM damage, but the precise relationship between orientation and intermetallic (IMC) and void growth has not been deduced. In this research x-ray microtomography was used to nondestructively scan samples and generate 3D reconstructions of both surface and internal features such as interfaces, IMC particles, and voids within a solder joint. Combined with controlled fabrication techniques to create comparable samples and electron backscatter diffraction (EBSD) and energy-dispersive spectroscopy (EDS) analysis for grain orientation and composition analysis, this work shows how grain structure plays a critical role in EM damage and how it differs from damage accrued from thermal effects that occur simultaneously. Unique IMC growth and voiding behaviors are characterized and explained in relation to the solder microstructures that cause their formation and the possible IMC-suppression effects of trace alloying element addition are discussed.
ContributorsBranch Kelly, Marion (Author) / Chawla, Nikhilesh (Thesis advisor) / Ankit, Kumar (Committee member) / Antoniswamy, Aravindha (Committee member) / Arizona State University (Publisher)
Created2019