This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151299-Thumbnail Image.png
Description
Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and

Asymptotic and Numerical methods are popular in applied electromagnetism. In this work, the two methods are applied for collimated antennas and calibration targets, respectively. As an asymptotic method, the diffracted Gaussian beam approach (DGBA) is developed for design and simulation of collimated multi-reflector antenna systems, based upon Huygens principle and independent Gaussian beam expansion, referred to as the frames. To simulate a reflector antenna in hundreds to thousands of wavelength, it requires 1E7 - 1E9 independent Gaussian beams. To this end, high performance parallel computing is implemented, based on Message Passing Interface (MPI). The second part of the dissertation includes the plane wave scattering from a target consisting of doubly periodic array of sharp conducting circular cones by the magnetic field integral equation (MFIE) via Coiflet based Galerkin's procedure in conjunction with the Floquet theorem. Owing to the orthogonally, compact support, continuity and smoothness of the Coiflets, well-conditioned impedance matrices are obtained. Majority of the matrix entries are obtained in the spectral domain by one-point quadrature with high precision. For the oscillatory entries, spatial domain computation is applied, bypassing the slow convergence of the spectral summation of the non-damping propagating modes. The simulation results are compared with the solutions from an RWG-MLFMA based commercial software, FEKO, and excellent agreement is observed.
ContributorsWang, Le, 1975- (Author) / Pan, George (Thesis advisor) / Yu, Hongyu (Committee member) / Aberle, James T., 1961- (Committee member) / Diaz, Rodolfo (Committee member) / Kitchen, Jennifer (Committee member) / Arizona State University (Publisher)
Created2012
153957-Thumbnail Image.png
ContributorsJavidahmadabadi, Mahdi (Author) / Kitchen, Jennifer (Thesis advisor) / Bakkaloglu, Bertan (Committee member) / Aberle, James T., 1961- (Committee member) / Arizona State University (Publisher)
Created2015
156883-Thumbnail Image.png
Description
The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter,

The continuing advancement of modulation standards with newer generations of cellular technology, promises ever increasing data rate and bandwidth efficiency. However, these modulation schemes present high peak to average power ratio (PAPR) even after applying crest factor reduction. Being the most power-hungry component in the radio frequency (RF) transmitter, power amplifiers (PA) for infrastructure applications, need to operate efficiently at the presence of these high PAPR signals while maintaining reasonable linearity performance which could be improved by moderate digital pre-distortion (DPD) techniques. This strict requirement of operating efficiently at average power level while being capable of delivering the peak power, made the load modulated PAs such as Doherty PA, Outphasing PA, various Envelope Tracking PAs, Polar transmitters and most recently the load modulated balanced PA, the prime candidates for such application. However, due to its simpler architecture and ability to deliver RF power efficiently with good linearity performance has made Doherty PA (DPA) the most popular solution and has been deployed almost exclusively for wireless infrastructure application all over the world.

Although DPAs has been very successful at amplifying the high PAPR signals, most recent advancements in cellular technology has opted for higher PAPR based signals at wider bandwidth. This lead to increased research and development work to innovate advanced Doherty architectures which are more efficient at back-off (BO) power levels compared to traditional DPAs. In this dissertation, three such advanced Doherty architectures and/or techniques are proposed to achieve high efficiency at further BO power level compared to traditional architecture using symmetrical devices for carrier and peaking PAs. Gallium Nitride (GaN) based high-electron-mobility (HEMT) technology has been used to design and fabricate the DPAs to validate the proposed advanced techniques for higher efficiency with good linearity performance at BO power levels.
ContributorsRuhul Hasin, Muhammad (Author) / Kitchen, Jennifer (Thesis advisor) / Aberle, James T., 1961- (Committee member) / Bakkaloglu, Bertan (Committee member) / Kiaei, Sayfe (Committee member) / Arizona State University (Publisher)
Created2018