This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

152842-Thumbnail Image.png
Description
Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is

Concrete is the most widely used infrastructure material worldwide. Production of portland cement, the main binding component in concrete, has been shown to require significant energy and account for approximately 5-7% of global carbon dioxide production. The expected continued increased use of concrete over the coming decades indicates this is an ideal time to implement sustainable binder technologies. The current work aims to explore enhanced sustainability concretes, primarily in the context of limestone and flow. Aspects such as hydration kinetics, hydration product formation and pore structure add to the understanding of the strength development and potential durability characteristics of these binder systems. Two main strategies for enhancing this sustainability are explored in this work: (i) the use of high volume limestone in combination with other alternative cementitious materials to decrease the portland cement quantity in concrete and (ii) the use of geopolymers as the binder phase in concrete. The first phase of the work investigates the use of fine limestone as cement replacement from the perspective of hydration, strength development, and pore structure. The nature of the potential synergistic benefit of limestone and alumina will be explored. The second phase will focus on the rheological characterization of these materials in the fresh state, as well as a more general investigation of the rheological characterization of suspensions. The results of this work indicate several key ideas. (i) There is a potential synergistic benefit for strength, hydration, and pore structure by using alumina and in portland limestone cements, (ii) the limestone in these systems is shown to react to some extent, and fine limestone is shown to accelerate hydration, (iii) rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, interparticle forces, surface area of the particles present, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended, and (iv) stress plateau method is proposed for the determination of rheological properties of concentrated suspensions, as it more accurately predicts apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions.
ContributorsVance, Kirk (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Chawla, Nikhilesh (Committee member) / Marzke, Robert (Committee member) / Arizona State University (Publisher)
Created2014
155044-Thumbnail Image.png
Description
Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a

Composite materials are widely used in various structural applications, including within the automotive and aerospace industries. Unidirectional composite layups have replaced other materials such as metals due to composites’ high strength-to-weight ratio and durability. Finite-element (FE) models are actively being developed to model response of composite systems subjected to a variety of loads including impact loads. These FE models rely on an array of measured material properties as input for accuracy. This work focuses on an orthotropic plasticity constitutive model that has three components – deformation, damage and failure. The model relies on the material properties of the composite such as Young’s modulus, Poisson’s ratio, stress-strain curves in the principal and off-axis material directions, etc. This thesis focuses on two areas important to the development of the FE model – tabbing of the test specimens and data processing of the tests used to generate the required stress-strain curves. A comparative study has been performed on three candidate adhesives using double lap-shear testing to determine their effectiveness in composite specimen tabbing. These tests determined the 3M DP460 epoxy performs best in shear. The Loctite Superglue with 80% the ultimate stress of the 3M DP460 epoxy is acceptable when test specimens have to be ready for testing within a few hours. JB KwikWeld is not suitable for tabbing. In addition, the Experimental Data Processing (EDP) program has been improved for use in post-processing raw data from composites test. EDP has improved to allow for complete processing with the implementation of new weighted least squares smoothing options, curve averaging techniques, and new functionality for data manipulation.
ContributorsSchmidt, Nathan William (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
154336-Thumbnail Image.png
Description
The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such

The need for sustainability in construction has encouraged scientists to develop novel environmentally friendly materials. The use of supplementary cementitious materials was one such initiative which aided in enhancing the fresh and hardened concrete properties. This thesis aims to explore the understanding of the early age rheological properties of such cementitious systems.

The first phase of the work investigates the influence of supplementary cementitious materials (SCM) in combination with ordinary Portland cement (OPC) on the rheological properties of fresh paste with and without the effect of superplasticizers. Yield stress, plastic viscosity and storage modulus are the rheological parameters which were evaluated for all the design mixtures to fundamentally understand the synergistic effects of the SCM. A time-dependent study was conducted on these blends to explore the structure formation at various time intervals which explains the effect of hydration in conjecture to its physical stiffening. The second phase focuses on the rheological characterization of novel iron powder based binder system.

The results of this work indicate that the rheological characteristics of cementitious suspensions are complex, and strongly dependent on several key parameters including: the solid loading, inter-particle forces, shape of the particle, particle size distribution of the particles, and rheological nature of the media in which the particles are suspended. Chemical composition and reactivity of the material play an important role in the time-dependent rheological study.

A stress plateau method is utilized for the determination of rheological properties of concentrated suspensions, as it better predicts the apparent yield stress and is shown to correlate well with other viscoelastic properties of the suspensions. Plastic viscosity is obtained by calculating the slope of the stress-strain rate curve of ramp down values of shear rates. In oscillatory stress measurements the plateau obtained within the linear visco-elastic region was considered to be the value for storage modulus.

Between the different types of fly ash, class F fly ash indicated a reduction in the rheological parameters as opposed to class C fly ash that is attributable to the enhanced ettringite formation in the latter. Use of superplasticizer led to a huge influence on yield stress and storage modulus of the paste due to the steric hindrance effect.

In the study of iron based binder systems, metakaolin had comparatively higher influence than fly ash on the rheology due to its tendency to agglomerate as opposed to the ball bearing effect observed in the latter. Iron increment above 60% resulted in a decrease in all the parameters of rheology discussed in this thesis. In the OPC-iron binder, the iron behaved as reinforcements yielding higher yield stress and plastic viscosity.
ContributorsInbasekaran, Aditya (Author) / Neithalath, Narayanan (Thesis advisor) / Rajan, Subramaniam D. (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016