This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

153925-Thumbnail Image.png
Description
This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these

This thesis provides a cost to benefit analysis of the proposed next generation of distribution systems- the Future Renewable Electric Energy Distribution Management (FREEDM) system. With the increasing penetration of renewable energy sources onto the grid, it becomes necessary to have an infrastructure that allows for easy integration of these resources coupled with features like enhanced reliability of the system and fast pro-tection from faults. The Solid State Transformer (SST) and the Fault Isolation Device (FID) make for the core of the FREEDM system and have huge investment costs.

Some key features of the FREEDM system include improved power flow control, compact design and unity power factor operation. Customers may observe a reduction in the electricity bill by a certain fraction for using renewable sources of generation. There is also a possibility of huge subsidies given to encourage use of renewable energy. This thesis is an attempt to quantify the benefits offered by the FREEDM system in monetary terms and to calculate the time in years required to gain a return on investments made. The elevated cost of FIDs needs to be justified by the advantages they offer. The result of different rates of interest and how they influence the payback period is also studied. The payback periods calculated are observed for viability. A comparison is made between the active power losses on a certain distribution feeder that makes use of distribution level magnetic transformers versus one that makes use of SSTs. The reduction in the annual active power losses in the case of the feeder using SSTs is translated onto annual savings in terms of cost when compared to the conventional case with magnetic transformers. Since the FREEDM system encourages operation at unity power factor, the need for installing capacitor banks for improving the power factor is eliminated and this re-flects in savings in terms of cost. The FREEDM system offers enhanced reliability when compared to a conventional system. The payback periods observed support the concept of introducing the FREEDM system.
ContributorsRaman, Apurva (Author) / Heydt, Gerald (Thesis advisor) / Karady, George G. (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2015
155815-Thumbnail Image.png
Description
With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially

With the penetration of distributed renewable energy and the development of

semiconductor technology, power electronic devices could be utilized to interface re-

newable energy generation and the distribution power grid. However, when directly

connected to the power grid, the semiconductors inside the power electronic devices

could be vulnerable to the power system transient, especially to lightning strikes.

The work of this research focuses on the insulation coordination of power elec-

tronic devices connected directly to the power distribution system. The Solid State

Transformer (SST) in Future Renewable Electric Energy Delivery and Management

(FREEDM) system could be a good example for grid connected power electronic

devices. Simulations were conducted in Power Systems Computer Aided Design

(PSCAD) software. A simulation done to the FREEDM SST showed primary re-

sults which were then compare to simulation done to the grid-connected operating

Voltage Source Converter (VSC) to get more objective results.

Based on the simulation results, voltage surges caused by lightning strikes could

result in damage on the grid-connected electronic devices. Placing Metal Oxide Surge

Arresers (MOSA, also known as Metal Oxide Surge Varistor, MOV) at the front lter

could provide eective protection for those devices from power transient. Part of this

research work was published as a conference paper and was presented at CIGRE US

National Conference: Grid of the Future Symposium [1] and North American Power

Symposium [2].
ContributorsRong, Xuening (Author) / Karady, George G. (Thesis advisor) / Heydt, Gerald T (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2017
152597-Thumbnail Image.png
Description
A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window

A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.
ContributorsIyengar, Varun (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014