This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

152185-Thumbnail Image.png
Description
Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e.

Over the past couple of decades, quality has been an area of increased focus. Multiple models and approaches have been proposed to measure the quality in the construction industry. This paper focuses on determining the quality of one of the types of roofing systems used in the construction industry, i.e. Sprayed Polyurethane Foam Roofs (SPF roofs). Thirty seven urethane coated SPF roofs that were installed in 2005 / 2006 were visually inspected to measure the percentage of blisters and repairs three times over a period of 4 year, 6 year and 7 year marks. A repairing criteria was established after a 6 year mark based on the data that were reported to contractors as vulnerable roofs. Furthermore, the relation between four possible contributing time of installation factors i.e. contractor, demographics, season, and difficulty (number of penetrations and size of the roof in square feet) that could affect the quality of the roof was determined. Demographics and difficulty did not affect the quality of the roofs whereas the contractor and the season when the roof was installed did affect the quality of the roofs.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Committee member) / Badger, William (Committee member) / Arizona State University (Publisher)
Created2013
154321-Thumbnail Image.png
Description
A roofing manufacturer wants to differentiate themselves from other roofing manufacturers based on performance information. However, construction industry has revealed poor performance documentation in the last couple of decades. With no current developed performance measurement model in the industry, two roofing manufacturers approached the research group to implement a warranty

A roofing manufacturer wants to differentiate themselves from other roofing manufacturers based on performance information. However, construction industry has revealed poor performance documentation in the last couple of decades. With no current developed performance measurement model in the industry, two roofing manufacturers approached the research group to implement a warranty program that measures the performance information of their systems and applicators. Moreover, the success of any project in the construction industry heavily relies upon the capability of the contractor(s) executing the project. Low-performing contractors are correlated with increased cost and delayed schedules, resulting in end-user dissatisfaction with the final product. Hence, the identification and differentiation of the high performing contractors from their competitors is also crucial. The purpose of this study is to identify and describe a new model for measuring manufacturer performance and differentiating contractor performance and capability for two roofing manufacturers (Manufacturer 1 and Manufacturer 2) in the roofing industry. The research uses multiple years of project data and customer satisfaction data collected for two roofing manufacturers for over 1,000 roofing contractors. The performance and end-user satisfaction was obtained for over 7,000 manufacturers' projects and each contractor associated with that project for cost, schedule, and quality metrics. The measurement process was successfully able to provide a performance measurement for the manufacturer based on the customer satisfaction and able to identify low performing contractors. This study presents the research method, the developed measurement model, and proposes a new performance measurement process that entities in the construction industry can use to measure performance.
ContributorsGajjar, Dhaval (Author) / Kashiwagi, Dean (Thesis advisor) / Sullivan, Kenneth (Thesis advisor) / Kashiwagi, Jacob (Committee member) / Arizona State University (Publisher)
Created2016
155073-Thumbnail Image.png
Description
Research has shown roofing systems with high solar reflectance and thermal emissivity lead to less heat absorption, a consequential reduction in cooling load demand, and a resultant reduction on energy expenditure. Studies on energy savings from cool roof coatings have been conducted for decades and when compared to more traditional

Research has shown roofing systems with high solar reflectance and thermal emissivity lead to less heat absorption, a consequential reduction in cooling load demand, and a resultant reduction on energy expenditure. Studies on energy savings from cool roof coatings have been conducted for decades and when compared to more traditional roofing systems have demonstrated energy savings ranging from 2-40%, with average savings estimated at 20%. The 20% average is widely used by cool roof industry professionals, designers, and contractors to market and sell the technology in the commercial sector to owners and owner representatives researching new roofs. While the 20% energy savings is a documented average, unfortunately there is no average roof. Each roof is unique considering size, materials, and location to name a few. In addition, the ability of the cool roof to maintain the original solar reflectance is integral to realizing energy savings. The case study calculated project payback for a 20-year cool roof design using both 30% and 20% estimated annual energy savings. In addition, building material specifications and solar reflectance attenuation in respect to reductions in cooling energy were projected into the payback calculations. Lastly, the cost impact of cleaning maintenance was added to the calculations to provide an analysis on affect to anticipated payback schedules. The results showed cleaning costs only added 1 year to project paybacks and saved over 262,244 kWh over 20 years.
ContributorsHaverstic, Preston (Author) / Sullivan, Kenneth (Thesis advisor) / Okamura, Patrick (Committee member) / Slife, Curtis (Committee member) / Arizona State University (Publisher)
Created2016