This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151383-Thumbnail Image.png
Description
Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera -

Motion capture using cost-effective sensing technology is challenging and the huge success of Microsoft Kinect has been attracting researchers to uncover the potential of using this technology into computer vision applications. In this thesis, an upper-body motion analysis in a home-based system for stroke rehabilitation using novel RGB-D camera - Kinect is presented. We address this problem by first conducting a systematic analysis of the usability of Kinect for motion analysis in stroke rehabilitation. Then a hybrid upper body tracking approach is proposed which combines off-the-shelf skeleton tracking with a novel depth-fused mean shift tracking method. We proposed several kinematic features reliably extracted from the proposed inexpensive and portable motion capture system and classifiers that correlate torso movement to clinical measures of unimpaired and impaired. Experiment results show that the proposed sensing and analysis works reliably on measuring torso movement quality and is promising for end-point tracking. The system is currently being deployed for large-scale evaluations.
ContributorsDu, Tingfang (Author) / Turaga, Pavan (Thesis advisor) / Spanias, Andreas (Committee member) / Rikakis, Thanassis (Committee member) / Arizona State University (Publisher)
Created2012
155748-Thumbnail Image.png
Description
Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait

Many studies on human walking pattern assume that adult gait is characterized by bilateral symmetrical behavior. It is well understood that maintaining symmetry in walking patterns increases energetic eciency. We present a framework to provide a quantitative assessment of human walking patterns, especially assessments related to symmetric and asymmetric gait patterns purely based on glide reflection. A Gliding symmetry score is calculated from the data obtained from Motion Capture(MoCap) system. Six primary joints (Shoulder, Elbow, Palm, Hip, Knee, Foot) are considered for this study. Two dierent abnormalities were chosen and studied carefully. All the two gaits were mimicked in controlled environment. The framework proposed clearly showed that it could distinguish the abnormal gaits from the ordinary walking patterns. This framework can be widely used by the doctors and physical therapists for kinematics analysis, bio-mechanics, motion capture research, sports medicine and physical therapy, including human gait analysis and injury rehabilitation.
ContributorsPotaraju, Chaitanya Prakash (Author) / Turaga, Pavan Kumar (Thesis advisor) / Krishnamurthi, Narayanan (Committee member) / Spanias, Andreas (Committee member) / Arizona State University (Publisher)
Created2017