This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150365-Thumbnail Image.png
Description

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture,

A recent joint study by Arizona State University and the Arizona Department of Transportation (ADOT) was conducted to evaluate certain Warm Mix Asphalt (WMA) properties in the laboratory. WMA material was taken from an actual ADOT project that involved two WMA sections. The first section used a foamed-based WMA admixture, and the second section used a chemical-based WMA admixture. The rest of the project included control hot mix asphalt (HMA) mixture. The evaluation included testing of field-core specimens and laboratory compacted specimens. The laboratory specimens were compacted at two different temperatures; 270 °F (132 °C) and 310 °F (154 °C). The experimental plan included four laboratory tests: the dynamic modulus (E*), indirect tensile strength (IDT), moisture damage evaluation using AASHTO T-283 test, and the Hamburg Wheel-track Test. The dynamic modulus E* results of the field cores at 70 °F showed similar E* values for control HMA and foaming-based WMA mixtures; the E* values of the chemical-based WMA mixture were relatively higher. IDT test results of the field cores had comparable finding as the E* results. For the laboratory compacted specimens, both E* and IDT results indicated that decreasing the compaction temperatures from 310 °F to 270 °F did not have any negative effect on the material strength for both WMA mixtures; while the control HMA strength was affected to some extent. It was noticed that E* and IDT results of the chemical-based WMA field cores were high; however, the laboratory compacted specimens results didn't show the same tendency. The moisture sensitivity findings from TSR test disagreed with those of Hamburg test; while TSR results indicated relatively low values of about 60% for all three mixtures, Hamburg test results were quite excellent. In general, the results of this study indicated that both WMA mixes can be best evaluated through field compacted mixes/cores; the results of the laboratory compacted specimens were helpful to a certain extent. The dynamic moduli for the field-core specimens were higher than for those compacted in the laboratory. The moisture damage findings indicated that more investigations are needed to evaluate moisture damage susceptibility in field.

ContributorsAlossta, Abdulaziz (Author) / Kaloush, Kamil (Thesis advisor) / Witczak, Matthew W. (Committee member) / Mamlouk, Michael S. (Committee member) / Arizona State University (Publisher)
Created2011
156462-Thumbnail Image.png
Description
Use of Recycled Asphalt Pavement (RAP) in newly designed asphalt mixtures is becoming a common practice. Depending on the percentage of RAP, the stiffness of the hot mix asphalt (HMA) increases by incorporating RAP in mixes. In a climatic area such as the City of Phoenix, RAP properties are expected

Use of Recycled Asphalt Pavement (RAP) in newly designed asphalt mixtures is becoming a common practice. Depending on the percentage of RAP, the stiffness of the hot mix asphalt (HMA) increases by incorporating RAP in mixes. In a climatic area such as the City of Phoenix, RAP properties are expected to be more oxidized and aged compared to other regions across the US. Therefore, there are concerns about the cracking behavior and long-term performance of asphalt mixes with high percentage of RAP. The use of Organosilane (OS) in this study was hypothesized to reduce the additional cracking potential and improve resistance to moisture damage of the asphalt mixtures when using RAP. OS has also the potential to improve the bond between the aggregate and asphalt binder. The use of OS also reduces the mixing and compaction temperatures required for asphalt mixtures, making it similar to a warm mix asphalt (WMA),

Six asphalt mixes were prepared with three RAP contents, 0%, 15% and 25%, with and without Organosilane. The mixing temperature was reduced by 10°C and the compaction temperature was reduced by 30°C. Mix designs were performed, and the volumetric properties were compared. The mixture laboratory performance was evaluated for all mixtures by conducting Dynamic Modulus, Flow Number and Tensile Strength Ratio tests.

The study findings showed that mixtures achieved better compaction at a reduced temperature of 30°C. Mixtures modified with Organosilane generally exhibited softer behavior at the extreme ends of lower and higher temperatures. The lower moduli are to reduce the potential for cracking. For the Flow Number test, the RAP mixtures with OS passed the minimum required at all traffic levels. Tensile Strength Ratio results increased with the increase in RAP percentage, and further increase was observed when OS was used. The OS reduced the sticking nature of the binder to the molds and equipment, which reduced the efforts in cleaning them.

Finally, the future use of RAP by the City of Phoenix would positively contributes to their sustainability aspiration and initiatives. The use of Organosilane may even facilitates higher percentage of RAP usage; it definitely improves the moisture resistance of asphalt mixtures, especially when lower mixing and compaction temperatures are desired or used.
ContributorsKaligotla, Phani Sasank (Author) / Kaloush, Kamil (Thesis advisor) / Mamlouk, Michael (Committee member) / Stempihar, Jeffrey (Committee member) / Arizona State University (Publisher)
Created2018