This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

150130-Thumbnail Image.png
Description
All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables'

All-dielectric self-supporting (ADSS) fiber optic cables are used for data transfer by the utilities. They are installed along high voltage transmission lines. Dry band arcing, a phenomenon which is observed in outdoor insulators, is also observed in ADSS cables. The heat developed during dry band arcing damages the ADSS cables' outer sheath. A method is presented here to rate the cable sheath using the power developed during dry band arcing. Because of the small diameter of ADSS cables, mechanical vibration is induced in ADSS cable. In order to avoid damage, vibration dampers known as spiral vibration dampers (SVD) are used over these ADSS cables. These dampers are installed near the armor rods, where the presence of leakage current and dry band activity is more. The effect of dampers on dry band activity is investigated by conducting experiments on ADSS cable and dampers. Observations made from the experiments suggest that the hydrophobicity of the cable and damper play a key role in stabilizing dry band arcs. Hydrophobic-ity of the samples have been compared. The importance of hydrophobicity of the samples is further illustrated with the help of simulation results. The results indi-cate that the electric field increases at the edges of water strip. The dry band arc-ing phenomenon could thus be correlated to the hydrophobicity of the outer sur-face of cable and damper.
ContributorsPrabakar, Kumaraguru (Author) / Karady, George G. (Thesis advisor) / Vittal, Vijay (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2011
156827-Thumbnail Image.png
Description
Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows and a security breach in one

infrastructure can spill over to

Our daily life is becoming more and more reliant on services provided by the infrastructures

power, gas , communication networks. Ensuring the security of these

infrastructures is of utmost importance. This task becomes ever more challenging as

the inter-dependence among these infrastructures grows and a security breach in one

infrastructure can spill over to the others. The implication is that the security practices/

analysis recommended for these infrastructures should be done in coordination.

This thesis, focusing on the power grid, explores strategies to secure the system that

look into the coupling of the power grid to the cyber infrastructure, used to manage

and control it, and to the gas grid, that supplies an increasing amount of reserves to

overcome contingencies.

The first part (Part I) of the thesis, including chapters 2 through 4, focuses on

the coupling of the power and the cyber infrastructure that is used for its control and

operations. The goal is to detect malicious attacks gaining information about the

operation of the power grid to later attack the system. In chapter 2, we propose a

hierarchical architecture that correlates the analysis of high resolution Micro-Phasor

Measurement Unit (microPMU) data and traffic analysis on the Supervisory Control

and Data Acquisition (SCADA) packets, to infer the security status of the grid and

detect the presence of possible intruders. An essential part of this architecture is

tied to the analysis on the microPMU data. In chapter 3 we establish a set of anomaly

detection rules on microPMU data that

flag "abnormal behavior". A placement strategy

of microPMU sensors is also proposed to maximize the sensitivity in detecting anomalies.

In chapter 4, we focus on developing rules that can localize the source of an events

using microPMU to further check whether a cyber attack is causing the anomaly, by

correlating SCADA traffic with the microPMU data analysis results. The thread that

unies the data analysis in this chapter is the fact that decision are made without fully estimating the state of the system; on the contrary, decisions are made using

a set of physical measurements that falls short by orders of magnitude to meet the

needs for observability. More specifically, in the first part of this chapter (sections 4.1-

4.2), using microPMU data in the substation, methodologies for online identification of

the source Thevenin parameters are presented. This methodology is used to identify

reconnaissance activity on the normally-open switches in the substation, initiated

by attackers to gauge its controllability over the cyber network. The applications

of this methodology in monitoring the voltage stability of the grid is also discussed.

In the second part of this chapter (sections 4.3-4.5), we investigate the localization

of faults. Since the number of PMU sensors available to carry out the inference

is insufficient to ensure observability, the problem can be viewed as that of under-sampling

a "graph signal"; the analysis leads to a PMU placement strategy that can

achieve the highest resolution in localizing the fault, for a given number of sensors.

In both cases, the results of the analysis are leveraged in the detection of cyber-physical

attacks, where microPMU data and relevant SCADA network traffic information

are compared to determine if a network breach has affected the integrity of the system

information and/or operations.

In second part of this thesis (Part II), the security analysis considers the adequacy

and reliability of schedules for the gas and power network. The motivation for

scheduling jointly supply in gas and power networks is motivated by the increasing

reliance of power grids on natural gas generators (and, indirectly, on gas pipelines)

as providing critical reserves. Chapter 5 focuses on unveiling the challenges and

providing solution to this problem.
ContributorsJamei, Mahdi (Author) / Scaglioe, Anna (Thesis advisor) / Ayyanar, Raja (Committee member) / Hedman, Kory W (Committee member) / Kosut, Oliver (Committee member) / Arizona State University (Publisher)
Created2018
Description
Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated.

Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated. In order to design insulators suitably, a better understanding of the insulator flashover is required, as it is a serious issue regarding the safe operation of power systems. However, it is not always feasible to conduct field and laboratory studies due to limited time and money.

The desire to accurately predict the performance of insulator flashovers requires mathematical models. Dynamic models are more appropriate than static models in terms of the instantaneous variation of arc parameters. In this dissertation, a dynamic model including conditions for arc dynamics, arc re-ignition and arc motion with AC supply is first developed.

For an AC power source, it is important to consider the equivalent shunt capacitance in addition to the short circuit current when evaluating pollution test results. By including the power source in dynamic models, the effects of source parameters on the leakage current waveform, the voltage drop and the flashover voltage were systematically investigated. It has been observed that for the same insulator under the same pollution level, there is a large difference among these flashover performances in high voltage laboratories and real power systems. Source strength is believed to be responsible for this discrepancy. Investigations of test source strength were conducted in this work in order to study its impact on different types of insulators with a variety of geometries.

Traditional deterministic models which have been developed so far can only predict whether an insulator would flashover or withstand. In practice, insulator flashover is a statistical process, given that both pollution severity and flashover voltage are probabilistic variables. A probability approach to predict the insulator flashover likelihood is presented based on the newly developed dynamic model.
ContributorsHe, Li (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George K (Committee member) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016