This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

152370-Thumbnail Image.png
Description
Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models.

Functional magnetic resonance imaging (fMRI) has been widely used to measure the retinotopic organization of early visual cortex in the human brain. Previous studies have identified multiple visual field maps (VFMs) based on statistical analysis of fMRI signals, but the resulting geometry has not been fully characterized with mathematical models. This thesis explores using concepts from computational conformal geometry to create a custom software framework for examining and generating quantitative mathematical models for characterizing the geometry of early visual areas in the human brain. The software framework includes a graphical user interface built on top of a selected core conformal flattening algorithm and various software tools compiled specifically for processing and examining retinotopic data. Three conformal flattening algorithms were implemented and evaluated for speed and how well they preserve the conformal metric. All three algorithms performed well in preserving the conformal metric but the speed and stability of the algorithms varied. The software framework performed correctly on actual retinotopic data collected using the standard travelling-wave experiment. Preliminary analysis of the Beltrami coefficient for the early data set shows that selected regions of V1 that contain reasonably smooth eccentricity and polar angle gradients do show significant local conformality, warranting further investigation of this approach for analysis of early and higher visual cortex.
ContributorsTa, Duyan (Author) / Wang, Yalin (Thesis advisor) / Maciejewski, Ross (Committee member) / Wonka, Peter (Committee member) / Arizona State University (Publisher)
Created2013
153275-Thumbnail Image.png
Description
In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of the working devices or even lead to the failure of

In this work, a highly sensitive strain sensing technique is developed to realize in-plane strain mapping for microelectronic packages or emerging flexible or foldable devices, where mechanical or thermal strain is a major concern that could affect the performance of the working devices or even lead to the failure of the devices. Therefore strain sensing techniques to create a contour of the strain distribution is desired.

The developed highly sensitive micro-strain sensing technique differs from the existing strain mapping techniques, such as digital image correlation (DIC)/micro-Moiré techniques, in terms of working mechanism, by filling a technology gap that requires high spatial resolution while simultaneously maintaining a large field-of-view. The strain sensing mechanism relies on the scanning of a tightly focused laser beam onto the grating that is on the sample surface to detect the change in the diffracted beam angle as a result of the strain. Gratings are fabricated on the target substrates to serve as strain sensors, which carries the strain information in the form of variations in the grating period. The geometric structure of the optical system inherently ensures the high sensitivity for the strain sensing, where the nanoscale change of the grating period is amplified by almost six orders into a diffraction peak shift on the order of several hundred micrometers. It significantly amplifies the small signal measurements so that the desired sensitivity and accuracy can be achieved.

The important features, such as strain sensitivity and spatial resolution, for the strain sensing technique are investigated to evaluate the technique. The strain sensitivity has been validated by measurements on homogenous materials with well known reference values of CTE (coefficient of thermal expansion). 10 micro-strain has been successfully resolved from the silicon CTE extraction measurements. Furthermore, the spatial resolution has been studied on predefined grating patterns, which are assembled to mimic the uneven strain distribution across the sample surface. A resolvable feature size of 10 µm has been achieved with an incident laser spot size of 50 µm in diameter.

In addition, the strain sensing technique has been applied to a composite sample made of SU8 and silicon, as well as the microelectronic packages for thermal strain mappings.
ContributorsLiang, Hanshuang (Author) / Yu, Hongbin (Thesis advisor) / Poon, Poh Chieh Benny (Committee member) / Jiang, Hanqing (Committee member) / Zhang, Yong-Hang (Committee member) / Arizona State University (Publisher)
Created2014