This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

149660-Thumbnail Image.png
Description
Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several

Proton exchange membrane fuel cells (PEMFCs) run on pure hydrogen and oxygen (or air), producing electricity, water, and some heat. This makes PEMFC an attractive option for clean power generation. PEMFCs also operate at low temperature which makes them quick to start up and easy to handle. PEMFCs have several important limitations which must be overcome before commercial viability can be achieved. Active areas of research into making them commercially viable include reducing the cost, size and weight of fuel cells while also increasing their durability and performance. A growing and important part of this research involves the computer modeling of fuel cells. High quality computer modeling and simulation of fuel cells can help speed up the discovery of optimized fuel cell components. Computer modeling can also help improve fundamental understanding of the mechanisms and reactions that take place within the fuel cell. The work presented in this thesis describes a procedure for utilizing computer modeling to create high quality fuel cell simulations using Ansys Fluent 12.1. Methods for creating computer aided design (CAD) models of fuel cells are discussed. Detailed simulation parameters are described and emphasis is placed on establishing convergence criteria which are essential for producing consistent results. A mesh sensitivity study of the catalyst and membrane layers is presented showing the importance of adhering to strictly defined convergence criteria. A study of iteration sensitivity of the simulation at low and high current densities is performed which demonstrates the variance in the rate of convergence and the absolute difference between solution values derived at low numbers of iterations and high numbers of iterations.
ContributorsArvay, Adam (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Liang, Yong (Committee member) / Subach, James (Committee member) / Arizona State University (Publisher)
Created2011
152347-Thumbnail Image.png
Description
Battery performance has been studied at different temperature, C rate. Different types of batteries have been used. Capacity and impedance are two factors, which are focused in the thesis. To evaluate battery performance and battery conditions, the SOC (state of charge) determination methods have been studied in the thesis. There

Battery performance has been studied at different temperature, C rate. Different types of batteries have been used. Capacity and impedance are two factors, which are focused in the thesis. To evaluate battery performance and battery conditions, the SOC (state of charge) determination methods have been studied in the thesis. There are two types of batteries divided in three groups: group I. Ni-Cd battery (2V, 8Ah); group II. Lead-acid battery (2V, 8Ah); and group III. Lead-acid battery (2V, 25Ah). The impedance testing is using electrochemical impedance spectroscopy methods. AC impedance method has been used to test different state of charge (100%, 80%, 60%, 40%, 20%). For the corrosion part, the corrosion rate of metal material in the heat transfer fluids has been tested at different temperature. Hastelloys C-276 in eutectic molten salts a mixture of NaCl, KCl and ZnCl2 using potentiodynamic method (swap from ± 30 mV in 0.2 mV.s-1). The lowest corrosion rate of Hastelloy C-276 is 5.51 µm per year at 250 °C. Particularly, the corrosion rate of Hastelloy C-276 jumps up to 53.33 µm per year at 400 °C.
ContributorsChu, Ximo (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2013
151534-Thumbnail Image.png
Description
Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and

Microgrids are a subset of the modern power structure; using distributed generation (DG) to supply power to communities rather than vast regions. The reduced scale mitigates loss allowing the power produced to do more with better control, giving greater security, reliability, and design flexibility. This paper explores the performance and cost viability of a hybrid grid-tied microgrid that utilizes Photovoltaic (PV), batteries, and fuel cell (FC) technology. The concept proposes that each community home is equipped with more PV than is required for normal operation. As the homes are part of a microgrid, excess or unused energy from one home is collected for use elsewhere within the microgrid footprint. The surplus power that would have been discarded becomes a community asset, and is used to run intermittent services. In this paper, the modeled community does not have parking adjacent to each home allowing for the installment of a privately owned slower Level 2 charger, making EV ownership option untenable. A solution is to provide a Level 3 DC Quick Charger (DCQC) as the intermittent service. The addition of batteries and Fuel Cells are meant to increase load leveling, reliability, and instill limited island capability.
ContributorsPatterson, Maxx (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Macia, Narciso (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2013
150831-Thumbnail Image.png
Description
With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts

With a recent shift to a more environmentally conscious society, low-carbon and non-carbon producing energy production methods are being investigated and applied all over the world. Of these methods, fuel cells show great potential for clean energy production. A fuel cell is an electrochemical energy conversion device which directly converts chemical energy into electrical energy. Proton exchange membrane fuel cells (PEMFCs) are a highly researched energy source for automotive and stationary power applications. In order to produce the power required to meet Department of Energy requirements, platinum (Pt) must be used as a catalyst material in PEMFCs. Platinum, however, is very expensive and extensive research is being conducted to develop ways to reduce the amount of platinum used in PEMFCs. In the current study, three catalyst synthesis techniques were investigated and evaluated on their effectiveness to produce platinum-on copper (Pt@Cu) core-shell nanocatalyst on multi-walled carbon nanotube (MWCNT) support material. These three methods were direct deposition method, two-phase surfactant method, and single-phase surfactant method, in which direct deposition did not use a surfactant for particle size control and the surfactant methods did. The catalyst materials synthesized were evaluated by visual inspection and fuel cell performance. Samples which produced high fuel cell power output were evaluated using transmission electron microscopy (TEM) imaging. After evaluation, it was concluded that the direct deposition technique was effective in synthesizing Pt@Cu core-shell nanocatalyst on MWCNTs support when a rinsing process was used before adding platinum. The peak power density achieved by the rinsed core-shell catalyst was 618 mW.cm-2 , 13 percent greater than that of commercial platinum-carbon (Pt/C) catalyst. Transmission electron microscopy imaging revealed the core-shell catalyst contained Pt shells and platinum-copper alloy cores. Rinsing with deionized (DI) water was shown to be a crucial step in core-shell catalyst deposition as it reduced the number of platinum colloids on the carbon nanotube surface. After evaluation, it was concluded that the two-phase surfactant and single-phase surfactant synthesis methods were not effective at producing core-shell nanocatalyst with the parameters investigated.
ContributorsAdame, Anthony (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
151054-Thumbnail Image.png
Description
Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel

Gas diffusion layers (GDLs) are a critical and essential part of proton exchange membrane fuel cells (PEMFCs). They carry out various important functions such as transportation of reactants to and from the reaction sites. The material properties and structural characteristics of the substrate and the microporous layer strongly influence fuel cell performance. The microporous layer of the GDLs was fabricated with the carbon slurry dispersed in water containing ammonium lauryl sulfate (ALS) using the wire rod coating method. GDLs were fabricated with different materials to compose the microporous layer and evaluated the effects on PEMFC power output performance. The consistency of the carbon slurry was achieved by adding 25 wt. % of PTFE, a binding agent with a 75:25 ratio of carbon (Pureblack and vapor grown carbon fiber). The GDLs were investigated in PEMFC under various relative humidity (RH) conditions using H2/O2 and H2/Air. GDLs were also fabricated with the carbon slurry dispersed in water containing sodium dodecyl sulfate (SDS) and multiwalled carbon nanotubes (MWCNTs) with isopropyl alcohol (IPA) based for fuel cell performance comparison. MWCNTs and SDS exhibits the highest performance at 60% and 70% RH with a peak power density of 1100 mW.cm-2 and 850 mW.cm-2 using air and oxygen as an oxidant. This means that the gas diffusion characteristics of these two samples were optimum at 60 and 70 % RH with high limiting current density range. It was also found that the composition of the carbon slurry, specifically ALS concentration has the highest peak power density of 1300 and 500mW.cm-2 for both H2/O2 and H2/Air at 100% RH. However, SDS and MWCNTs demonstrates the lowest power density using air and oxygen as an oxidants at 100% RH.
ContributorsVillacorta, Rashida (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Tamizhmani, Govindasamy (Committee member) / Arizona State University (Publisher)
Created2012
154189-Thumbnail Image.png
Description
Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation

Humanity’s demand for energy is increasing exponentially and the dependence on fossil fuels is both unsustainable and detrimental to the environment. To provide a solution to the impending energy crisis, it is reasonable to look toward utilizing solar energy, which is abundant and renewable. One approach to harvesting solar irradiation for fuel purposes is through mimicking the processes of natural photosynthesis in an artificial design to use sunlight and water to store energy in chemical bonds for later use. Thus, in order to design an efficient energy conversion device, the underlying processes of the natural system must be understood. An artificial photosynthetic device has many components and each can be optimized separately. This work deals with the design, construction and study of some of those components. The first chapter provides an introduction to this work. The second chapter shows a proof of concept for a water splitting dye sensitized photoelectrochemical cell followed by the presentation of a new p-type semiconductor, the design of a modular cluster binding protein that can be used for incorporating catalysts, and a new anchoring group for semiconducting oxides with high electron injection efficiency. The third chapter investigates the role of electronic coupling and thermodynamics for photoprotection in artificial systems by triplet-triplet energy transfer from tetrapyrroles to carotenoids. The fourth chapter describes a mimic of the proton-coupled electron transfer in photosystem II and confirms that in the artificial system a concerted mechanism operates. In the fifth chapter, a microbial system is designed to work in tandem with a photovoltaic device to produce high energy fuels. A variety of quinone redox mediators have been synthesized to shuttle electrons from an electron donor to the microbial system. Lastly, the synthesis of a variety of photosensitizers is detailed for possible future use in artificial systems. The results of this work helps with the understanding of the processes of natural photosynthesis and suggests ways to design artificial photosynthetic devices that can contribute to solving the renewable energy challenge.
ContributorsBrown, Chelsea L (Author) / Moore, Ana L (Thesis advisor) / Gust, Devens (Committee member) / Woodbury, Neal (Committee member) / Arizona State University (Publisher)
Created2015
153757-Thumbnail Image.png
Description
As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells

As sunlight is an ideal source of energy on a global scale, there are several approaches being developed to harvest it and convert it to a form that can be used. One of these is though mimicking the processes in natural photosynthesis. Artificial photosynthetic systems include dye sensitized solar cells for the conversion of sunlight to electricity, and photoelectrosynthetic cells which use sunlight to drive water oxidation and hydrogen production to convert sunlight to energy stored in fuel. Both of these approaches include the process of the conversion of light energy into chemical potential in the form of a charge-separated state via molecular compounds. Porphyrins are commonly used as sensitizers as they have well suited properties for these applications. A high potential porphyrin with four nitrile groups at the beta positions, a β-cyanoporphyrin (CyP), was investigated and found to be an excellent electron acceptor, as well as have the necessary properties to be used as a sensitizer for photoelectrosynthetic cells for water oxidation. A new synthetic method was developed which allowed for the CyP to be used in a number of studies in artificial photosynthetic systems. This dissertation reports the theories behind, and the results of four studies utilizing a CyP for the first time; as a sensitizer in a DSSC for an investigation of its use in light driven water oxidation photoelectrosynthetic cells, as an electron acceptor in a proton coupled electron transfer system, in a carotene-CyP dyad to study energy and electron transfer processes between these moieties, and in a molecular triad to study a unique electron transfer process from a C60 radical anion to the CyP. It has been found that CyPs can be used as powerful electron acceptors in molecular systems to provide a large driving force for electron transfer that can aid in the process of the conversion of light to electrochemical potential. The results from these studies have led to a better understanding of the properties of CyPs, and have provided new insight into several electron transfer reactions.
ContributorsAntoniuk-Pablant, Antaeres' Dawn (Author) / Gust, Devens (Thesis advisor) / Moore, Ana L (Committee member) / Ghirlanda, Giovanna (Committee member) / Arizona State University (Publisher)
Created2015
153168-Thumbnail Image.png
Description
Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs

Proton exchange membrane fuel cells have attracted immense research activities from the inception of the technology due to its high stability and performance capabilities. The major obstacle from commercialization is the cost of the catalyst material in manufacturing the fuel cell. In the present study, the major focus in PEMFCs has been in reduction of the cost of the catalyst material using graphene, thin film coated and Organometallic Molecular catalysts. The present research is focused on improving the durability and active surface area of the catalyst materials with low platinum loading using nanomaterials to reduce the effective cost of the fuel cells. Performance, Electrochemical impedance spectroscopy, oxygen reduction and surface morphology studies were performed on each manufactured material.

Alkaline fuel cells with anion exchange membrane get immense attention due to very attractive opportunity of using non-noble metal catalyst materials. In the present study, cathodes with various organometallic cathode materials were prepared and investigated for alkaline membrane fuel cells for oxygen reduction and performance studies. Co and Fe Phthalocyanine catalyst materials were deposited on multi-walled carbon nanotubes (MWCNTs) support materials. Membrane Electrode Assemblies (MEAs) were fabricated using Tokuyama Membrane (#A901) with cathodes containing Co and Fe Phthalocyanine/MWCNTs and Pt/C anodes. Fuel cell performance of the MEAs was examined.
ContributorsKolli, Sri Harsha (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Nam, Changho (Committee member) / Peng, Xihong (Committee member) / Arizona State University (Publisher)
Created2014
152603-Thumbnail Image.png
Description
Objective of the study is to get a clear idea on the cyclic performance of duty operation of Batteries. Batteries are an integral part of solar plants and wind energy farms due to the fact that energy storage is vital in these places. Various types of losses related to the

Objective of the study is to get a clear idea on the cyclic performance of duty operation of Batteries. Batteries are an integral part of solar plants and wind energy farms due to the fact that energy storage is vital in these places. Various types of losses related to the performance are clearly analyzed and studied. Assessment of State Of Health and State Of Charge is critical in order to maximize the performance and lifetime of a battery. Batteries were subjected to temperature and charge/discharge rate variations and found that the state of health degradation was severe at high temperature along with faster rate of charging compared to other evaluation conditions. The entire research was conducted at the Alternative Energy Technology Laboratory located at Arizona State University, Mesa. It involved the use of various instruments namely the Programmable Voltage Regulator for charging, Computerized Battery Analyzer and Programmable Electric Load for discharging and also the PARSTAT potentiostat for measuring the impedance of various battery technologies under study. At first, the Batteries were discharged and based on the time taken, it was charged for the next cycle. Impedance measurement was done at regular cycle intervals in order to study the degradation of health. For every cycle, the battery capacity was also calculated and noted down. . The results obtained show that low and stable impedance over the given cycle life is an important consideration in the selection of batteries according to the applications.
ContributorsGaneshram, Prashanth (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Peng, Xihong (Committee member) / Nam, Changho (Committee member) / Arizona State University (Publisher)
Created2014
152604-Thumbnail Image.png
Description
A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer

A clean and sustainable alternative to fossil fuels is solar energy. For efficient use of solar energy to be realized, artificial systems that can effectively capture and convert sunlight into a usable form of energy have to be developed. In natural photosynthesis, antenna chlorophylls and carotenoids capture sunlight and transfer the resulting excitation energy to the photosynthetic reaction center (PRC). Small reorganization energy, λ and well-balanced electronic coupling between donors and acceptors in the PRC favor formation of a highly efficient charge-separated (CS) state. By covalently linking electron/energy donors to acceptors, organic molecular dyads and triads that mimic natural photosynthesis were synthesized and studied. Peripherally linked free base phthalocyanine (Pc)-fullerene (C60) and a zinc (Zn) phthalocyanine-C60 dyads were synthesized. Photoexcitation of the Pc moiety resulted in singlet-singlet energy transfer to the attached C60, followed by electron transfer. The lifetime of the CS state was 94 ps. Linking C60 axially to silicon (Si) Pc, a lifetime of the CS state of 4.5 ns was realized. The exceptionally long-lived CS state of the SiPc-C60 dyad qualifies it for applications in solar energy conversion devices. A secondary electron donor was linked to the dyad to obtain a carotenoid (Car)-SiPc-C60 triad and ferrocene (Fc)-SiPc-C60 triad. Excitation of the SiPc moiety resulted in fast electron transfer from the Car or Fc secondary electron donors to the C60. The lifetime of the CS state was 17 ps and 1.2 ps in Car-SiPc-C60 and Fc-SiPc-C60, respectively. In Chapter 3, an efficient synthetic route that yielded regioselective oxidative porphyrin dimerization is presented. Using Cu2+ as the oxidant, meso-β doubly-connected fused porphyrin dimers were obtained in very high yields. Removal of the copper from the macrocycle affords a free base porphyrin dimer. This allows for exchange of metals and provides a route to a wider range of metallporphyrin dimers. In Chapter 4, the development of an efficient and an expedient route to bacteriopurpurin synthesis is discussed. Meso-10,20- diformylation of porphyrin was achieved and one-pot porphyrin diacrylate synthesis and cyclization to afford bacteriopurpurin was realized. The bacteriopurpurin had a reduction potential of - 0.85 V vs SCE and λmax, 845 nm.
ContributorsArero, Jaro (Author) / Gust, Devens (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014