This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
168480-Thumbnail Image.png
Description
Solar energy is a disruptive technology within the electricity industry, and rooftop solar is particularly disruptive as it changes the relationship between the industry and its customers as the latter generate their own power, sell power to the grid, and reduce their dependence on the industry as the sole source

Solar energy is a disruptive technology within the electricity industry, and rooftop solar is particularly disruptive as it changes the relationship between the industry and its customers as the latter generate their own power, sell power to the grid, and reduce their dependence on the industry as the sole source provider of electric power. Hundreds of thousands of people in the western United States have made the decision to adopt residential rooftop solar photovoltaic technologies (solar PV) for their homes, with some areas of western cities now having 50% or more of homes with solar installed. This dissertation seeks to understand how rooftop solar energy is altering the fabric of urban life, drawing on three distinct lenses and a mixed suite of methods to examine how homeowners, electric utilities, financial lenders, regulators, solar installers, realtors, and professional trade organizations have responded to the opportunities and challenges presented by rooftop solar energy. First, using a novel solar installation data set, it systematically examines the temporal, geographic, and socio-economic dynamics of the adoption of rooftop solar technologies across the Phoenix metropolitan area over the decade of the 2010s. This study examines the broad social, economic, and urban environmental contexts within which solar adoption has occurred and how these have impacted differential rates of solar uptake. Second, using survey and real estate data from the Phoenix metropolitan area, it explores how solar energy has begun to shape important social and market dynamics, illuminating how decision-making in real estate transactions, including by buyers, sellers, agents, lenders, and appraisers is shifting to accommodate houses with installed solar systems. Lastly, the study explores patterns of rooftop solar adoption across major electric utilities and what those can tell us about the extent to which corporate social responsibility and sustainability reporting have affected the practices of investor-owned electric utilities (IOU) within the western US.
ContributorsO'Leary, Jason (Author) / Fisher, Erik (Thesis advisor) / Miller, Clark (Thesis advisor) / Dirks, Gary (Committee member) / Arizona State University (Publisher)
Created2021