This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157332-Thumbnail Image.png
Description
In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to

In the past, the photovoltaic (PV) modules were typically constructed with glass superstrate containing cerium oxide and EVA (ethylene vinyl acetate) encapsulant containing UV absorbing additives. However, in the current industry, the PV modules are generally constructed without cerium oxide in the glass and UV absorbing additives in EVA to increase quantum efficiency of crystalline silicon solar cells in the UV regions. This new approach is expected to boost the initial power output of the modules and reduce the long-term encapsulant browning issues. However, this new approach could lead to other durability and reliability issues such as delamination of encapsulant by damaging interfacial bonds, destruction of antireflection coating on solar cells and even breakage of polymeric backbone of EVA. This work compares the durability and reliability issues of PV modules having glass without cerium oxide and EVA with (aka, UVcut or UVC) and without (aka, UVpass or UVP) UV absorbing additives. In addition, modules with UVP front and UVC back EVA have also been investigated (aka, UVhybrid or UVH). The mini-modules with nine split cells used in this work were fabricated at ASU’s Photovoltaic Reliability Laboratory. The durability and reliability caused by three stress variables have been investigated and the three variables are temperature, humidity/oxygen and UV dosage. The influence of up to 800 kWh/m2 UV dosage has been investigated at various dosage levels. Many material and device characterizations have been performed to ascertain the degradation modes and effects. The UVC modules showed encapsulant discoloration at the cell centers as expected but the UVH modules showed a ring-shaped encapsulant discoloration close to the cell edges as evidenced in the UV fluorescence (UVF) imaging study. The PV modules containing UVP on both sides of cells with limited access to humidity or oxygen through backsheet (covered backsheet with adhesive aluminum tape) seem to experience encapsulant delamination as evidenced in the UVF images. Plausible explanations for these observations have been presented.
ContributorsArularasu, Pooja (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Mu, Bin (Thesis advisor) / Varman, Arul M (Committee member) / Arizona State University (Publisher)
Created2019
152677-Thumbnail Image.png
Description
Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials,

Organic optoelectronic devices have remained a research topic of great interest over the past two decades, particularly in the development of efficient organic photovoltaics (OPV) and organic light emitting diodes (OLED). In order to improve the efficiency, stability, and materials variety for organic optoelectronic devices a number of emitting materials, absorbing materials, and charge transport materials were developed and employed in a device setting. Optical, electrical, and photophysical studies of the organic materials and their corresponding devices were thoroughly carried out. Two major approaches were taken to enhance the efficiency of small molecule based OPVs: developing material with higher open circuit voltages or improved device structures which increased short circuit current. To explore the factors affecting the open circuit voltage (VOC) in OPVs, molecular structures were modified to bring VOC closer to the effective bandgap, ∆EDA, which allowed the achievement of 1V VOC for a heterojunction of a select Ir complex with estimated exciton energy of only 1.55eV. Furthermore, the development of anode interfacial layer for exciton blocking and molecular templating provide a general approach for enhancing the short circuit current. Ultimately, a 5.8% PCE was achieved in a single heterojunction of C60 and a ZnPc material prepared in a simple, one step, solvent free, synthesis. OLEDs employing newly developed deep blue emitters based on cyclometalated complexes were demonstrated. Ultimately, a peak EQE of 24.8% and nearly perfect blue emission of (0.148,0.079) was achieved from PtON7dtb, which approaches the maximum attainable performance from a blue OLED. Furthermore, utilizing the excimer formation properties of square-planar Pt complexes, highly efficient and stable white devices employing a single emissive material were demonstrated. A peak EQE of over 20% for pure white color (0.33,0.33) and 80 CRI was achieved with the tridentate Pt complex, Pt-16. Furthermore, the development of a series of tetradentate Pt complexes yielded highly efficient and stable single doped white devices due to their halogen free tetradentate design. In addition to these benchmark achievements, the systematic molecular modification of both emissive and absorbing materials provides valuable structure-property relationship information that should help guide further developments in the field.
ContributorsFleetham, Tyler Blain (Author) / Li, Jian (Thesis advisor) / Alford, Terry (Committee member) / Adams, James (Committee member) / Arizona State University (Publisher)
Created2014