This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150066-Thumbnail Image.png
Description
The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is

The San Andreas Fault (SAF) is the primary structure within a system of faults accommodating motion between the North American and Pacific plates. Physical models of faulting and characterizations of seismic hazard are informed by investigations of paleoseismology, slip distribution, and slip rate. The impact of earthquakes on people is due in large part to social vulnerability. This dissertation contributes an analysis about the relationships between earthquake hazard and social vulnerability in Los Angeles, CA and investigations of paleoseismology and fault scarp array complexity on the central SAF. Analysis of fault scarp array geometry and morphology using 0.5 m digital elevation models along 122 km of the central SAF reveals significant variation in the complexity of SAF structure. Scarp trace complexity is measured by scarp separation, changes in strike, fault trace gaps, and scarp length per SAF kilometer. Geometrical complexity in fault scarp arrays indicates that the central SAF can be grouped into seven segments. Segment boundaries are controlled by interactions with subsidiary faults. Investigation of an offset channel at Parkfield, CA yields a late Holocene slip rate of 26.2 +6.4/- 4.3 mm/yr. This rate is lower than geologic measurements on the Carrizo section of the SAF and rates implied by far-field geodesy. However, it is consistent with historical observations of slip at Parkfield. Paleoseismology at Parkfield indicates that large earthquakes are absent from the stratigraphic record for at least a millennia. Together these observations imply that the amount of plate boundary slip accommodated by the main SAF varies along strike. Contrary to most environmental justice analyses showing that vulnerable populations are spatially-tied to environmental hazards, geospatial analyses relating social vulnerability and earthquake hazard in southern California show that these groups are not disproportionately exposed to the areas of greatest hazard. Instead, park and green space is linked to earthquake hazard through fault zone regulation. In Los Angeles, a parks poor city, the distribution of social vulnerability is strongly tied to a lack of park space. Thus, people with access to financial and political resources strive to live in neighborhoods with parks, even in the face of forewarned risk.
ContributorsToké, Nathan A (Author) / Arrowsmith, J R (Thesis advisor) / Boone, Christopher G (Committee member) / Heimsath, Arjun M (Committee member) / Shock, Everett L (Committee member) / Whipple, Kelin X (Committee member) / Arizona State University (Publisher)
Created2011
156308-Thumbnail Image.png
Description
Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving

Organic reactions in natural hydrothermal settings have relevance toward the deep carbon cycle, petroleum formation, the ecology of deep microbial communities, and potentially the origin of life. Many reaction pathways involving organic compounds under geochemically relevant hydrothermal conditions have now been characterized, but their mechanisms, in particular those involving mineral surface catalysis, are largely unknown. The overall goal of this work is to describe these mechanisms so that predictive models of reactivity can be developed and so that applications of these reactions beyond geochemistry can be explored. The focus of this dissertation is the mechanisms of hydrothermal dehydration and catalytic hydrogenation reactions. Kinetic and structure/activity relationships show that elimination occurs mainly by the E1 mechanism for simple alcohols via homogeneous catalysis. Stereochemical probes show that hydrogenation on nickel occurs on the metal surface. By combining dehydration with and catalytic reduction, effective deoxygenation of organic structures with various functional groups such as alkenes, polyols, ketones, and carboxylic acids can be accomplished under hydrothermal conditions, using either nickel or copper-zinc alloy. These geomimetic reactions can potentially be used in biomass reduction to generate useful fuels and other high value chemicals. Through the use of earth-abundant metal catalysts, and water as the solvent, the reactions presented in this dissertation are a green alternative to current biomass deoxygenation/reduction methods, which often use exotic, rare-metal catalysts, and organic solvents.
ContributorsBockisch, Christiana (Author) / Gould, Ian R (Thesis advisor) / Hartnett, Hilairy E (Committee member) / Shock, Everett L (Committee member) / Arizona State University (Publisher)
Created2018