This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

149303-Thumbnail Image.png
Description
To establish reliable wireless communication links it is critical to devise schemes to mitigate the effects of the fading channel. In this regard, this dissertation analyzes two types of systems: point-to-point, and multiuser systems. For point-to-point systems with multiple antennas, switch and stay diversity combining offers a substantial complexity reduction

To establish reliable wireless communication links it is critical to devise schemes to mitigate the effects of the fading channel. In this regard, this dissertation analyzes two types of systems: point-to-point, and multiuser systems. For point-to-point systems with multiple antennas, switch and stay diversity combining offers a substantial complexity reduction for a modest loss in performance as compared to systems that implement selection diversity. For the first time, the design and performance of space-time coded multiple antenna systems that employ switch and stay combining at the receiver is considered. Novel switching algorithms are proposed and upper bounds on the pairwise error probability are derived for different assumptions on channel availability at the receiver. It is proved that full spatial diversity is achieved when the optimal switching threshold is used. Power distribution between training and data codewords is optimized to minimize the loss suffered due to channel estimation error. Further, code design criteria are developed for differential systems. Also, for the special case of two transmit antennas, new codes are designed for the differential scheme. These proposed codes are shown to perform significantly better than existing codes. For multiuser systems, unlike the models analyzed in literature, multiuser diversity is studied when the number of users in the system is random. The error rate is proved to be a completely monotone function of the number of users, while the throughput is shown to have a completely monotone derivative. Using this it is shown that randomization of the number of users always leads to deterioration of performance. Further, using Laplace transform ordering of random variables, a method for comparison of system performance for different user distributions is provided. For Poisson users, the error rates of the fixed and random number of users are shown to asymptotically approach each other for large average number of users. In contrast, for a finite average number of users and high SNR, it is found that randomization of the number of users deteriorates performance significantly.
ContributorsBangalore Narasimhamurthy, Adarsh (Author) / Tepedelenlioğlu, Cihan (Thesis advisor) / Duman, Tolga M. (Committee member) / Spanias, Andreas S (Committee member) / Reisslein, Martin (Committee member) / Papandreou-Suppappola, Antonia (Committee member) / Arizona State University (Publisher)
Created2010
149313-Thumbnail Image.png
Description
Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image

Thousands of high-resolution images are generated each day. Segmenting, classifying, and analyzing the contents of these images are the key steps in image understanding. This thesis focuses on image segmentation and classification and its applications in synthetic, texture, natural, biomedical, and industrial images. A robust level-set-based multi-region and texture image segmentation approach is proposed in this thesis to tackle most of the challenges in the existing multi-region segmentation methods, including computational complexity and sensitivity to initialization. Medical image analysis helps in understanding biological processes and disease pathologies. In this thesis, two cell evolution analysis schemes are proposed for cell cluster extraction in order to analyze cell migration, cell proliferation, and cell dispersion in different cancer cell images. The proposed schemes accurately segment both the cell cluster area and the individual cells inside and outside the cell cluster area. The method is currently used by different cell biology labs to study the behavior of cancer cells, which helps in drug discovery. Defects can cause failure to motherboards, processors, and semiconductor units. An automatic defect detection and classification methodology is very desirable in many industrial applications. This helps in producing consistent results, facilitating the processing, speeding up the processing time, and reducing the cost. In this thesis, three defect detection and classification schemes are proposed to automatically detect and classify different defects related to semiconductor unit images. The first proposed defect detection scheme is used to detect and classify the solder balls in the processor sockets as either defective (Non-Wet) or non-defective. The method produces a 96% classification rate and saves 89% of the time used by the operator. The second proposed defect detection scheme is used for detecting and measuring voids inside solder balls of different boards and products. The third proposed defect detection scheme is used to detect different defects in the die area of semiconductor unit images such as cracks, scratches, foreign materials, fingerprints, and stains. The three proposed defect detection schemes give high accuracy and are inexpensive to implement compared to the existing high cost state-of-the-art machines.
ContributorsSaid, Asaad F (Author) / Karam, Lina (Thesis advisor) / Chakrabarti, Chaitali (Committee member) / Tepedelenlioğlu, Cihan (Committee member) / Patel, Nital (Committee member) / Arizona State University (Publisher)
Created2010