This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

150993-Thumbnail Image.png
Description
Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit

Nanotechnology is a scientific field that has recently expanded due to its applications in pharmaceutical and personal care products, industry and agriculture. As result of this unprecedented growth, nanoparticles (NPs) have become a significant environmental contaminant, with potential to impact various forms of life in environment. Metal nanoparticles (mNPs) exhibit unique properties such as increased chemical reactivity due to high specific surface area to volume ratios. Bacteria play a major role in many natural and engineered biogeochemical reactions in wastewater treatment plants and other environmental compartments. I have evaluated the laboratory isolates of E. coli, Bacillus, Alcaligenes, Pseudomonas; wastewater isolates of E. coli and Bacillus; and pathogenic isolate of E. coli for their response to 50 & 100 nm sized Cu nanoparticles (CuNPs). Bactericidal tests, scanning electron microscopy (SEM) analyses, and probable toxicity pathways assays were performed. The results indicate that under continuous mixing conditions, CuNPs are effective in inactivation of the selected bacterial isolates. In general, exposure to CuNPs resulted in 4 to >6 log reduction in bacterial population within 2 hours. Based on the GR, LDH and MTT assays, bacterial cells showed different toxicity elicitation pathways after exposure to CuNPs. Therefore, it can be concluded that the laboratory isolates are good candidates for predicting the behavior of environmental isolates exposed to CuNPs. Also, high inactivation values recorded in this study suggest that the presence of CuNPs in different environmental compartments may have an impact on pollutants attenuation and wastewater biological treatment processes. These results point towards the need for an in depth investigation of the impact of NPs on the biological processes; and long-term effect of high load of NPs on the stability of aquatic and terrestrial ecologies.
ContributorsAlboloushi, Ali (Author) / Abbaszadegan, Morteza (Thesis advisor) / Alum, Absar (Committee member) / Fox, Peter (Committee member) / Olson, Larry (Committee member) / Arizona State University (Publisher)
Created2012
171533-Thumbnail Image.png
Description
Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a

Corrosion is known to have severe infrastructure integrity implications in a broad range of industries including water and wastewater treatment and reclamation. In the U.S. alone, the total losses due to corrosion in drinking water and wastewater systems can account for economic losses as high as $80 billion dollars a year. Microbially induced corrosion is a complex phenomenon which involve various phases; 1) formation of biofilms on submerged surfaces, 2) creation of micro-environmental niches associated with biofilm growth, 3) altered availability nutrients, 4) changes in the pH and oxygen concentrations. Biofilms can harbor opportunistic or pathogenic bacteria for a long time increasing the risk of pathogen exposure for the end users. The focus of this thesis research was to study the kinetics of microbially induced corrosion of various materials in water and reclaimed water systems. The specific objective was to assess the biofilms formation potential on stainless steel 304, stainless steel 316, galvanized steel, copper, cPVC, glass, carbon steel, and cast iron in water and reclaimed water systems. Experiments were conducted using bioreactor containers, each bioreactor housed four sampling boxes with eight partitions, dedicated to each material type coupon. One bioreactor was stationed at ASU, and one at Vistancia Aquifer Storage and Recovery (ASR) well; while three bioreactors were stationed at Butler facility, at pre-disinfection, post-UV and post-chlorination. From each location, one submerged sampling box was retrieved after 1, 3, 6 and 12 months. Time series of biofilm samples recovered from various types of coupons from different locations were analyzed using physical and culture-based techniques for quantification of biofilms and detection of heterotrophic plate count (HPC) bacteria, Legionella, Mycobacterium, and sulfate reducing bacteria (SRB). After one-year, galvanized steel had the highest concentration of HPC at 4.27 logs while copper had the lowest concentration of 3.08 logs of HPC. Bacterial growth data collected from the SRB tests was compiled to develop a numerical matrix using growth potential, biofilm formation potential and metal reduction potential of SRB isolates. This risk assessment matrix can be a useful tool for the water industry to evaluate the potential risk of MIC in their systems.
ContributorsNeal, Amber (Author) / Abbaszadegan, Morteza (Thesis advisor) / Fox, Peter (Committee member) / Alum, Absar (Committee member) / Arizona State University (Publisher)
Created2022