This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

156414-Thumbnail Image.png
Description
Mobility is an important aspect of the lives of religious individuals described by medieval texts in early and late medieval Ireland, and biogeochemical methods can be used to detect mobility in archaeological populations. Stories are recorded of monks and nuns traveling and founding monasteries across Ireland, Scotland, England, Wales, and

Mobility is an important aspect of the lives of religious individuals described by medieval texts in early and late medieval Ireland, and biogeochemical methods can be used to detect mobility in archaeological populations. Stories are recorded of monks and nuns traveling and founding monasteries across Ireland, Scotland, England, Wales, and other areas of Europe. However, these texts rarely address the quotidian lives of average monks and nuns who lived in monastic communities. This dissertation seeks to understand if travel was a typical part of the experiences of religious and lay people in early and late medieval Ireland. It also aims to increase understanding of how monastic communities related to the local lay communities, including addressing if the monastery was populated by those who grew up in the local area. Another methodological aim of this dissertation is to advance the field of archaeological biogeochemistry by (1) adding to the bioavailable strontium baseline in Ireland and (2) quantifying the contribution of ocean-derived strontium to coastal environments. These topics are explored through the biogeochemical analysis of 88 individuals buried at 5 early and late medieval monasteries in Ireland and the analysis of a total of 85 plant samples from four counties in Ireland. The three papers in this dissertation present: (1) a summary of the mobility of religious and lay people buried at the monasteries (Chapter 2), (2) a case study presenting evidence for fosterage of a local child at the early medieval monastery of Illaunloughan, Co. Kerry (Chapter 3), and (3) a study designed to quantify the impact of sea spray on bioavailable strontium in coastal environments (Chapter 4). The majority of lay and religious individuals studied were estimated to be local, indicating that medieval Irish Christianity was strongly rooted in the local community. The study of ocean-derived strontium in a coastal environment indicates that sea spray has a non-uniform impact on bioavailable strontium in coastal regions. These findings shed new light on medieval monastic and lay life in Ireland through the application of biogeochemical methods, contributing to the growth of the field of archaeological chemistry in Ireland.
ContributorsAlonzi, Elise (Author) / Knudson, Kelly (Thesis advisor) / Hegmon, Michelle (Committee member) / Scott, Rachel (Committee member) / Stojanowski, Christopher (Committee member) / Arizona State University (Publisher)
Created2018
161416-Thumbnail Image.png
Description
Interactions between proteins form the basis of almost all biological mechanisms. The majority of proteins perform their functions as a part of an assembled complex, rather than as an isolated species. Understanding the functional pathways of these protein complexes helps in uncovering the molecular mechanisms involved in the interactions. In

Interactions between proteins form the basis of almost all biological mechanisms. The majority of proteins perform their functions as a part of an assembled complex, rather than as an isolated species. Understanding the functional pathways of these protein complexes helps in uncovering the molecular mechanisms involved in the interactions. In this thesis, this has been explored in two fundamental ways. First, a biohybrid complex was assembled using the photosystem I (PSI) protein complex to translate the biochemical pathways into a non-cellular environment. This involved incorporating PSI on a porous antimony-doped tin oxide electrode using cytochrome c. Photocurrent was generated upon illumination of the PSI/electrode system alone at microamp/cm2 levels, with reduced oxygen apparently as the primary carrier. When the PSI/electrode system was coupled with ferredoxin, ferredoxin-NADP+ reductase (FNR), and NADP+, the resulting light-powered NADPH production was coupled to a dehydrogenase system for enzymatic carbon reduction. The results demonstrated that light-dependent reduction readily takes place. However, the pathways do not always match the biological pathways of PSI in nature. To create a complex self-assembled system such as the one involving PSI that is structurally well defined, there is a need to develop ways to guide the molecular interactions. In the second part of the thesis, this problem was approached by studying a well-defined system involving monoclonal antibodies (mAbs) binding their cognate epitope sequences to understand the molecular recognition properties associated with protein-protein interactions. This approach used a neural network model to derive a comprehensive and quantitative relationship between an amino acid sequence and its function by using sparse measurements of mAb binding to peptides on a high density peptide microarray. The resulting model can be used to predict the function of any peptide in the possible combinatorial sequence space. The results demonstrated that by training the model on just ~105 peptides out of the total combinatorial space of ~1010, the target sequences of the mAbs (cognate epitopes) can be predicted with high statistical accuracy. Furthermore, the biological relevance of the algorithm’s predictive ability has also been demonstrated.
ContributorsSingh, Akanksha (Author) / Woodbury, Neal (Thesis advisor) / Liu, Yan (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2021