This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

154641-Thumbnail Image.png
Description
Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed

Proliferation of social media websites and discussion forums in the last decade has resulted in social media mining emerging as an effective mechanism to extract consumer patterns. Most research on social media and pharmacovigilance have concentrated on

Adverse Drug Reaction (ADR) identification. Such methods employ a step of drug search followed by classification of the associated text as consisting an ADR or not. Although this method works efficiently for ADR classifications, if ADR evidence is present in users posts over time, drug mentions fail to capture such ADRs. It also fails to record additional user information which may provide an opportunity to perform an in-depth analysis for lifestyle habits and possible reasons for any medical problems.

Pre-market clinical trials for drugs generally do not include pregnant women, and so their effects on pregnancy outcomes are not discovered early. This thesis presents a thorough, alternative strategy for assessing the safety profiles of drugs during pregnancy by utilizing user timelines from social media. I explore the use of a variety of state-of-the-art social media mining techniques, including rule-based and machine learning techniques, to identify pregnant women, monitor their drug usage patterns, categorize their birth outcomes, and attempt to discover associations between drugs and bad birth outcomes.

The technique used models user timelines as longitudinal patient networks, which provide us with a variety of key information about pregnancy, drug usage, and post-

birth reactions. I evaluate the distinct parts of the pipeline separately, validating the usefulness of each step. The approach to use user timelines in this fashion has produced very encouraging results, and can be employed for a range of other important tasks where users/patients are required to be followed over time to derive population-based measures.
ContributorsChandrashekar, Pramod Bharadwaj (Author) / Davulcu, Hasan (Thesis advisor) / Gonzalez, Graciela (Thesis advisor) / Hsiao, Sharon (Committee member) / Arizona State University (Publisher)
Created2016
152906-Thumbnail Image.png
Description
Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network

Multidimensional data have various representations. Thanks to their simplicity in modeling multidimensional data and the availability of various mathematical tools (such as tensor decompositions) that support multi-aspect analysis of such data, tensors are increasingly being used in many application domains including scientific data management, sensor data management, and social network data analysis. Relational model, on the other hand, enables semantic manipulation of data using relational operators, such as projection, selection, Cartesian-product, and set operators. For many multidimensional data applications, tensor operations as well as relational operations need to be supported throughout the data life cycle. In this thesis, we introduce a tensor-based relational data model (TRM), which enables both tensor- based data analysis and relational manipulations of multidimensional data, and define tensor-relational operations on this model. Then we introduce a tensor-relational data management system, so called, TensorDB. TensorDB is based on TRM, which brings together relational algebraic operations (for data manipulation and integration) and tensor algebraic operations (for data analysis). We develop optimization strategies for tensor-relational operations in both in-memory and in-database TensorDB. The goal of the TRM and TensorDB is to serve as a single environment that supports the entire life cycle of data; that is, data can be manipulated, integrated, processed, and analyzed.
ContributorsKim, Mijung (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sundaram, Hari (Committee member) / Ye, Jieping (Committee member) / Arizona State University (Publisher)
Created2014
155764-Thumbnail Image.png
Description
With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and

With the rise of Online Social Networks (OSN) in the last decade, social network analysis has become a crucial research topic. The OSN graphs have unique properties that distinguish them from other types of graphs. In this thesis, five month Tweet corpus collected from Bangladesh - between June 2016 and October 2016 is analyzed, in order to detect accounts that belong to groups. These groups consist of official and non-official twitter handles of political organizations and NGOs in Bangladesh. A set of network, temporal, spatial and behavioral features are proposed to discriminate between accounts belonging to individual twitter users, news, groups and organization leaders. Finally, the experimental results are presented and a subset of relevant features is identified that lead to a generalizable model. Detection of tiny number of groups from large network is achieved with 0.8 precision, 0.75 recall and 0.77 F1 score. The domain independent network and behavioral features and models developed here are suitable for solving twitter account classification problem in any context.
ContributorsGore, Chinmay Chandrashekhar (Author) / Davulcu, Hasan (Thesis advisor) / Hsiao, Ihan (Committee member) / Li, Baoxin (Committee member) / Arizona State University (Publisher)
Created2017
161232-Thumbnail Image.png
Description
Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to its

Many real-world problems, such as model- and data-driven computer simulation analysis, social and collaborative network analysis, brain data analysis, and so on, benefit from jointly modeling and analyzing the underlying patterns associated with complex, multi-relational data. Tensor decomposition is an ideal mathematical tool for this joint modeling, due to its simultaneous analysis of such multi-relational data, which is made possible by the data's multidimensional, array-based nature. A major challenge in tensor decomposition lies with its computational and space complexity, especially for dense datasets. While the process is comparatively faster for sparse tensors, decomposition is still a major bottleneck for many applications. The tensor decomposition process results in dense (hence, large) intermediate results, even when the input tensor is sparse (or small). Noise is another challenge for most data mining techniques, and many tensor decomposition schemes are sensitive to noisy datasets; this is an inevitable problem for real-world data, which can lead to false conclusions. In this dissertation, I develop innovative tensor decomposition algorithms for mining both sparse and dense multi-relational data in a noise-resistant way. I present novel, scalable, parallelizable tensor decomposition algorithms, specifically tuned to be effective for dense, noisy tensors, and which maintain the quality of the resulting analysis. Furthermore, I present results on multi-relational data applications focusing on model- and data-driven computer simulation analysis, as well as social network and web mining, which demonstrate the effectiveness of these tensor decompositions.
ContributorsLi, Xinsheng (Author) / Candan, Kasim S (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria L (Committee member) / Tong, Hanghang (Committee member) / Arizona State University (Publisher)
Created2019
161479-Thumbnail Image.png
Description
Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection

Tensors are commonly used for representing multi-dimensional data, such as Web graphs, sensor streams, and social networks. As a consequence of the increase in the use of tensors, tensor decomposition operations began to form the basis for many data analysis and knowledge discovery tasks, from clustering, trend detection, anomaly detection to correlationanalysis [31, 38]. It is well known that Singular Value matrix Decomposition (SVD) [9] is used to extract latent semantics for matrix data. When apply SVD to tensors, which have more than two modes, it is tensor decomposition. The two most popular tensor decomposition algorithms are the Tucker [54] and the CP [19] decompositions. Intuitively, they both generalize SVD to tensors. However, one key problem with tensor decomposition is its computational complexity which may cause system bottleneck. Therefore, two phase block-centric CP tensor decomposition (2PCP) was proposed to partition the tensor into small sub-tensors, execute sub-tensor decomposition in parallel and combine the factors from each sub-tensor into final decomposition factors through iterative rerefinement process. Consequently, I proposed Sub-tensor Impact Graph (SIG) to account for inaccuracy propagation among sub-tensors and measure the impact of decomposition of sub-tensors on the other's decomposition, Based on SIG, I proposed several optimization strategies to optimize 2PCP's phase-2 refinement process. Furthermore, I applied SIG and optimization strategies for data focus, data evolution, and focus shifting in tensor analysis. Personalized Tensor Decomposition (PTD) is proposed to account for the users focus given the observations that in many applications, the user may have a focus of interest i.e., part of the data for which the user needs high accuracy and beyond this area focus, accuracy may not be as critical. PTD takes as input one or more areas of focus and performs the decomposition in such a way that, when reconstructed, the accuracy of the tensor is boosted for these areas of focus. A related challenge of data evolution in tensor analytics is incremental tensor decomposition since re-computation of the whole tensor decomposition with each update will cause high computational costs and incur large memory overheads. Especially for applications where data evolves over time and the tensor-based analysis results need to be continuouslymaintained. To avoid re-decomposition, I propose a two-phase block-incremental CP-based tensor decomposition technique, BICP, that efficiently and effectively maintains tensor decomposition results in the presence of dynamically evolving tensor data. I further extend the research focus on user focus shift. User focus may change over time as data is evolving along the time. Although PTD is efficient, re-computation for each user preference update can be the bottleneck for the system. Therefore I propose dynamic evolving user focus tensor decomposition which can smartly reuse the existing decomposition result to improve the efficiency of evolving user focus block decomposition.
ContributorsHuang, shengyu (Author) / Candan, K. Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sapino, Maria Luisa (Committee member) / Tong, Hanghang (Committee member) / Zou, Jia (Committee member) / Arizona State University (Publisher)
Created2021
154589-Thumbnail Image.png
Description
Bank institutions employ several marketing strategies to maximize new customer acquisition as well as current customer retention. Telemarketing is one such approach taken where individual customers are contacted by bank representatives with offers. These telemarketing strategies can be improved in combination with data mining techniques that allow predictability

Bank institutions employ several marketing strategies to maximize new customer acquisition as well as current customer retention. Telemarketing is one such approach taken where individual customers are contacted by bank representatives with offers. These telemarketing strategies can be improved in combination with data mining techniques that allow predictability of customer information and interests. In this thesis, bank telemarketing data from a Portuguese banking institution were analyzed to determine predictability of several client demographic and financial attributes and find most contributing factors in each. Data were preprocessed to ensure quality, and then data mining models were generated for the attributes with logistic regression, support vector machine (SVM) and random forest using Orange as the data mining tool. Results were analyzed using precision, recall and F1 score.
ContributorsEjaz, Samira (Author) / Davulcu, Hasan (Thesis advisor) / Balasooriya, Janaka (Committee member) / Candan, Kasim (Committee member) / Arizona State University (Publisher)
Created2016