This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

168360-Thumbnail Image.png
Description
As the world moves towards faster production times, quicker shipping, and overall, more demanding schedules, the humans caught in the loop are subject to physical duress causing them to physically break down and have muscular skeletal injuries. Surprisingly, with more automation in logistics houses, the remaining workers must be quicker

As the world moves towards faster production times, quicker shipping, and overall, more demanding schedules, the humans caught in the loop are subject to physical duress causing them to physically break down and have muscular skeletal injuries. Surprisingly, with more automation in logistics houses, the remaining workers must be quicker and do more, again resulting in muscular-skeletal injuries. To help alleviate this strain, a class of robotics and wearables has arisen wherein the human is assisted by a worn mechanical device. These devices, traditionally called exoskeletons, fall into two general categories: passive and active. Passive exoskeletons employ no electronics to activate their assistance and instead typically rely on the spring-like qualities of many materials. These are generally lighter weight than their active counterparts, but also lack the assistive power and can even interfere in other routine operations. Active exoskeletons, on the other hand, aim to avoid as much interference as possible by using electronics and power to assist the wearer. Properly executed, this can deliver power at the most opportune time and disengage from interference when not needed. However, if the tuning is mismatched from the human, it can unintentionally increase loads and possibly lead to other future injuries or harm. This dissertation investigates exoskeleton technology from two vantage points: the designer and the consumer. In the first, the creation of the Aerial Porter Exoskeleton (APEx) for the US Air Force (USAF). Testing of this first of its kind exoskeleton revealed a peak metabolic savings of 8.13% as it delivers 30 N-m of torque about each hip. It was tested extensively in live field conditions over 8 weeks to great success. The second section is an exploration of different commercially available exoskeletons and the development of a common set of standards/testing protocols is described. The results show a starting point for a set of standards to be used in a rapidly growing sector.
ContributorsMartin, William Brandon (Author) / Sugar, Thomas (Thesis advisor) / Redkar, Sangram (Thesis advisor) / Hollander, Kevin (Committee member) / Arizona State University (Publisher)
Created2021
158469-Thumbnail Image.png
Description
As the world population continues to age, the demand for treatment and rehabilitation of long-term age-related ailments will rise. Healthcare technology must keep up with this demand, and existing solutions must become more readily available to the populace. Conditions such as impairment due to stroke currently take months or years

As the world population continues to age, the demand for treatment and rehabilitation of long-term age-related ailments will rise. Healthcare technology must keep up with this demand, and existing solutions must become more readily available to the populace. Conditions such as impairment due to stroke currently take months or years of physical therapy to overcome, but rehabilitative exoskeletons can be used to greatly extend a physical therapist’s capabilities.

In this thesis, a rehabilitative knee exoskeleton was designed which is significantly lighter, more portable and less costly to manufacture than existing designs. It accomplishes this performance by making use of high-powered and weight-optimized brushless DC (BLDC) electric motors designed for drones, open-source hardware and software solutions for robotic motion control, and rapid prototyping technologies such as 3D printing and laser cutting.

The exoskeleton is made from a series of laser cut aluminum plates spaced apart with off-the-shelf standoffs. A drone motor with a torque of 1.32 Nm powers an 18.5:1 reduction two-stage belt drive, giving a maximum torque of 24.4 Nm at the output. The bearings for the belt drive are installed into 3D printed bearing mounts, which act as a snug intermediary between the bearing and the aluminum plate. The system is powered off a 24 volt, 1,500 MAh lithium battery, which can provide power for around an hour of walking activity.

The exoskeleton is controlled with an ODrive motor controller connected to a Raspberry Pi. Hip angle data is provided by an IMU, and the knee angle is provided by an encoder on the output shaft. A compact Rotary Series Elastic Actuator (cRSEA) device is mounted on the output shaft as well, to accurately measure the output torque going to the wearer. A Proportional-Derivative (PD) controller with feedforward relates the input current with the output torque. The device was tested on a treadmill and found to have an average backdrive torque of 0.39 Nm, significantly lower than the current state of the art. A gravity compensation controller and impedance controller were implemented to assist during swing and stance phases respectively. The results were compared to the muscular exertion of the knee measured via Electromyography (EMG).
ContributorsParmentier, Robin W (Author) / Zhang, Wenlong (Thesis advisor) / Sugar, Thomas (Committee member) / Lee, Hyunglae (Committee member) / Arizona State University (Publisher)
Created2020