This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 4 of 4
Filtering by

Clear all filters

Description
Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated.

Transmission voltages worldwide are increasing to accommodate higher power transfer from power generators to load centers. Insulator dimensions cannot increase linearly with the voltage, as supporting structures become too tall and heavy. Therefore, it is necessary to optimize the insulator design considering all operating conditions including dry, wet and contaminated. In order to design insulators suitably, a better understanding of the insulator flashover is required, as it is a serious issue regarding the safe operation of power systems. However, it is not always feasible to conduct field and laboratory studies due to limited time and money.

The desire to accurately predict the performance of insulator flashovers requires mathematical models. Dynamic models are more appropriate than static models in terms of the instantaneous variation of arc parameters. In this dissertation, a dynamic model including conditions for arc dynamics, arc re-ignition and arc motion with AC supply is first developed.

For an AC power source, it is important to consider the equivalent shunt capacitance in addition to the short circuit current when evaluating pollution test results. By including the power source in dynamic models, the effects of source parameters on the leakage current waveform, the voltage drop and the flashover voltage were systematically investigated. It has been observed that for the same insulator under the same pollution level, there is a large difference among these flashover performances in high voltage laboratories and real power systems. Source strength is believed to be responsible for this discrepancy. Investigations of test source strength were conducted in this work in order to study its impact on different types of insulators with a variety of geometries.

Traditional deterministic models which have been developed so far can only predict whether an insulator would flashover or withstand. In practice, insulator flashover is a statistical process, given that both pollution severity and flashover voltage are probabilistic variables. A probability approach to predict the insulator flashover likelihood is presented based on the newly developed dynamic model.
ContributorsHe, Li (Author) / Gorur, Ravi S (Thesis advisor) / Karady, George K (Committee member) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2016
152769-Thumbnail Image.png
Description
With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in a distribution residential network. The overall

With ever increasing use of natural gas to generate electricity, installed natural gas fired microturbines are found in residential areas to generate electricity locally. This research work discusses a generalized methodology for assessing optimal capacity and locations for installing natural gas fired microturbines in a distribution residential network. The overall objective is to place microturbines to minimize the system power loss occurring in the electrical distribution network; in such a way that the electric feeder does not need any up-gradation. The IEEE 123 Node Test Feeder is selected as the test bed for validating the developed methodology. Three-phase unbalanced electric power flow is run in OpenDSS through COM server, and the gas distribution network is analyzed using GASWorkS. The continual sensitivity analysis methodology is developed to select multiple DG locations and annual simulation is run to minimize annual average losses. The proposed placement of microturbines must be feasible in the gas distribution network and should not result into gas pipeline reinforcement. The corresponding gas distribution network is developed in GASWorkS software, and nodal pressures of the gas system are checked for various cases to investigate if the existing gas distribution network can accommodate the penetration of selected microturbines. The results indicate the optimal locations suitable to place microturbines and capacity that can be accommodated by the system, based on the consideration of overall minimum annual average losses as well as the guarantee of nodal pressure provided by the gas distribution network. The proposed method is generalized and can be used for any IEEE test feeder or an actual residential distribution network.
ContributorsKamdar, Krutak (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
152597-Thumbnail Image.png
Description
A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window

A robust, fast and accurate protection system based on pilot protection concept was developed previously and a few alterations in that algorithm were made to make it faster and more reliable and then was applied to smart distribution grids to verify the results for it. The new 10 sample window method was adapted into the pilot protection program and its performance for the test bed system operation was tabulated. Following that the system comparison between the hardware results for the same algorithm and the simulation results were compared. The development of the dual slope percentage differential method, its comparison with the 10 sample average window pilot protection system and the effects of CT saturation on the pilot protection system are also shown in this thesis. The implementation of the 10 sample average window pilot protection system is done to multiple distribution grids like Green Hub v4.3, IEEE 34, LSSS loop and modified LSSS loop. Case studies of these multi-terminal model are presented, and the results are also shown in this thesis. The result obtained shows that the new algorithm for the previously proposed protection system successfully identifies fault on the test bed and the results for both hardware and software simulations match and the response time is approximately less than quarter of a cycle which is fast as compared to the present commercial protection system and satisfies the FREEDM system requirement.
ContributorsIyengar, Varun (Author) / Karady, George G. (Thesis advisor) / Ayyanar, Raja (Committee member) / Holbert, Keith E. (Committee member) / Arizona State University (Publisher)
Created2014
158100-Thumbnail Image.png
Description
An optimal energy scheduling procedure is essential in an isolated environment such as naval submarines. Conventional naval submarines include diesel-electric propulsion systems, which utilize diesel generators along with batteries and fuel cells. Submarines can charge the batteries by running diesel-electric generators only at the surface or at snorkeling depth. This

An optimal energy scheduling procedure is essential in an isolated environment such as naval submarines. Conventional naval submarines include diesel-electric propulsion systems, which utilize diesel generators along with batteries and fuel cells. Submarines can charge the batteries by running diesel-electric generators only at the surface or at snorkeling depth. This is the most dangerous time for submarines to be detectable by acoustic and non-acoustic sensors of enemy assets. Optimizing the energy resources while reducing the need for snorkeling is the main factor to enhance underwater endurance. This thesis introduces an energy management system (EMS) as a supervisory tool for the officers onboard to plan energy schedules in order to complete various missions. The EMS for a 4,000-ton class conventional submarine is developed to minimize snorkeling and satisfy various conditions of practically designed missions by optimizing the energy resources, such as Lithium-ion batteries, Proton-exchange membrane fuel cells, and diesel-electric generators. Eventually, the optimized energy schedules with the minimum snorkeling hours are produced for five mission scenarios. More importantly, this EMS performs deterministic and stochastic operational scheduling processes to provide secured optimal schedules which contains outages in the power generation and storage systems.
ContributorsJeon, Byeongdoo (Author) / Hedman, Mojdeh Khorsand (Thesis advisor) / Holbert, Keith E. (Committee member) / Wu, Meng (Committee member) / Arizona State University (Publisher)
Created2020