This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

152236-Thumbnail Image.png
Description
Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary

Continuous Delivery, as one of the youngest and most popular member of agile model family, has become a popular concept and method in software development industry recently. Instead of the traditional software development method, which requirements and solutions must be fixed before starting software developing, it promotes adaptive planning, evolutionary development and delivery, and encourages rapid and flexible response to change. However, several problems prevent Continuous Delivery to be introduced into education world. Taking into the consideration of the barriers, we propose a new Cloud based Continuous Delivery Software Developing System. This system is designed to fully utilize the whole life circle of software developing according to Continuous Delivery concepts in a virtualized environment in Vlab platform.
ContributorsDeng, Yuli (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Chen, Yinong (Committee member) / Arizona State University (Publisher)
Created2013
151524-Thumbnail Image.png
Description
Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is

Process migration is a heavily studied research area and has a number of applications in distributed systems. Process migration means transferring a process running on one machine to another such that it resumes execution from the point at which it was suspended. The conventional approach to implement process migration is to move the entire state information of the process (including hardware context, virtual memory, files etc.) from one machine to another. Copying all the state information is costly. This thesis proposes and demonstrates a new approach of migrating a process between two cores of Intel Single Chip Cloud (SCC), an experimental 48-core processor by Intel, with each core running a separate instance of the operating system. In this method the amount of process state to be transferred from one core's memory to another is reduced by making use of special registers called Lookup tables (LUTs) present on each core of SCC. Thus this new approach is faster than the conventional method.
ContributorsJain, Vaibhav (Author) / Dasgupta, Partha (Thesis advisor) / Shriavstava, Aviral (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2013
151275-Thumbnail Image.png
Description
The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to

The pay-as-you-go economic model of cloud computing increases the visibility, traceability, and verifiability of software costs. Application developers must understand how their software uses resources when running in the cloud in order to stay within budgeted costs and/or produce expected profits. Cloud computing's unique economic model also leads naturally to an earn-as-you-go profit model for many cloud based applications. These applications can benefit from low level analyses for cost optimization and verification. Testing cloud applications to ensure they meet monetary cost objectives has not been well explored in the current literature. When considering revenues and costs for cloud applications, the resource economic model can be scaled down to the transaction level in order to associate source code with costs incurred while running in the cloud. Both static and dynamic analysis techniques can be developed and applied to understand how and where cloud applications incur costs. Such analyses can help optimize (i.e. minimize) costs and verify that they stay within expected tolerances. An adaptation of Worst Case Execution Time (WCET) analysis is presented here to statically determine worst case monetary costs of cloud applications. This analysis is used to produce an algorithm for determining control flow paths within an application that can exceed a given cost threshold. The corresponding results are used to identify path sections that contribute most to cost excess. A hybrid approach for determining cost excesses is also presented that is comprised mostly of dynamic measurements but that also incorporates calculations that are based on the static analysis approach. This approach uses operational profiles to increase the precision and usefulness of the calculations.
ContributorsBuell, Kevin, Ph.D (Author) / Collofello, James (Thesis advisor) / Davulcu, Hasan (Committee member) / Lindquist, Timothy (Committee member) / Sen, Arunabha (Committee member) / Arizona State University (Publisher)
Created2012
153969-Thumbnail Image.png
Description
Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict

Emerging trends in cyber system security breaches in critical cloud infrastructures show that attackers have abundant resources (human and computing power), expertise and support of large organizations and possible foreign governments. In order to greatly improve the protection of critical cloud infrastructures, incorporation of human behavior is needed to predict potential security breaches in critical cloud infrastructures. To achieve such prediction, it is envisioned to develop a probabilistic modeling approach with the capability of accurately capturing system-wide causal relationship among the observed operational behaviors in the critical cloud infrastructure and accurately capturing probabilistic human (users’) behaviors on subsystems as the subsystems are directly interacting with humans. In our conceptual approach, the system-wide causal relationship can be captured by the Bayesian network, and the probabilistic human behavior in the subsystems can be captured by the Markov Decision Processes. The interactions between the dynamically changing state graphs of Markov Decision Processes and the dynamic causal relationships in Bayesian network are key components in such probabilistic modelling applications. In this thesis, two techniques are presented for supporting the above vision to prediction of potential security breaches in critical cloud infrastructures. The first technique is for evaluation of the conformance of the Bayesian network with the multiple MDPs. The second technique is to evaluate the dynamically changing Bayesian network structure for conformance with the rules of the Bayesian network using a graph checker algorithm. A case study and its simulation are presented to show how the two techniques support the specific parts in our conceptual approach to predicting system-wide security breaches in critical cloud infrastructures.
ContributorsNagaraja, Vinjith (Author) / Yau, Stephen S. (Thesis advisor) / Ahn, Gail-Joon (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2015
154084-Thumbnail Image.png
Description
Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by

Lighting systems and air-conditioning systems are two of the largest energy consuming end-uses in buildings. Lighting control in smart buildings and homes can be automated by having computer controlled lights and window blinds along with illumination sensors that are distributed in the building, while temperature control can be automated by having computer controlled air-conditioning systems. However, programming actuators in a large-scale environment for buildings and homes can be time consuming and expensive. This dissertation presents an approach that algorithmically sets up the control system that can automate any building without requiring custom programming. This is achieved by imbibing the system self calibrating and self learning abilities.

For lighting control, the dissertation describes how the problem is non-deterministic polynomial-time hard(NP-Hard) but can be resolved by heuristics. The resulting system controls blinds to ensure uniform lighting and also adds artificial illumination to ensure light coverage remains adequate at all times of the day, while adjusting for weather and seasons. In the absence of daylight, the system resorts to artificial lighting.

For temperature control, the dissertation describes how the temperature control problem is modeled using convex quadratic programming. The impact of every air conditioner on each sensor at a particular time is learnt using a linear regression model. The resulting system controls air-conditioning equipments to ensure the maintenance of user comfort and low cost of energy consumptions. The system can be deployed in large scale environments. It can accept multiple target setpoints at a time, which improves the flexibility and efficiency of cooling systems requiring temperature control.

The methods proposed work as generic control algorithms and are not preprogrammed for a particular place or building. The feasibility, adaptivity and scalability features of the system have been validated through various actual and simulated experiments.
ContributorsWang, Yuan (Author) / Dasgupta, Partha (Thesis advisor) / Davulcu, Hasan (Committee member) / Huang, Dijiang (Committee member) / Reddy, T. Agami (Committee member) / Arizona State University (Publisher)
Created2015
154909-Thumbnail Image.png
Description
Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically

Nowadays, Computing is so pervasive that it has become indeed the 5th utility (after water, electricity, gas, telephony) as Leonard Kleinrock once envisioned. Evolved from utility computing, cloud computing has emerged as a computing infrastructure that enables rapid delivery of computing resources as a utility in a dynamically scalable, virtualized manner. However, the current industrial cloud computing implementations promote segregation among different cloud providers, which leads to user lockdown because of prohibitive migration cost. On the other hand, Service-Orented Computing (SOC) including service-oriented architecture (SOA) and Web Services (WS) promote standardization and openness with its enabling standards and communication protocols. This thesis proposes a Service-Oriented Cloud Computing Architecture by combining the best attributes of the two paradigms to promote an open, interoperable environment for cloud computing development. Mutil-tenancy SaaS applicantions built on top of SOCCA have more flexibility and are not locked down by a certain platform. Tenants residing on a multi-tenant application appear to be the sole owner of the application and not aware of the existence of others. A multi-tenant SaaS application accommodates each tenant’s unique requirements by allowing tenant-level customization. A complex SaaS application that supports hundreds, even thousands of tenants could have hundreds of customization points with each of them providing multiple options, and this could result in a huge number of ways to customize the application. This dissertation also proposes innovative customization approaches, which studies similar tenants’ customization choices and each individual users behaviors, then provides guided semi-automated customization process for the future tenants. A semi-automated customization process could enable tenants to quickly implement the customization that best suits their business needs.
ContributorsSun, Xin (Author) / Tsai, Wei-Tek (Thesis advisor) / Xue, Guoliang (Committee member) / Davulcu, Hasan (Committee member) / Sarjoughian, Hessam S. (Committee member) / Arizona State University (Publisher)
Created2016
153303-Thumbnail Image.png
Description
Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards

Skyline queries are a well-established technique used in multi criteria decision applications. There is a recent interest among the research community to efficiently compute skylines but the problem of presenting the skyline that takes into account the preferences of the user is still open. Each user has varying interests towards each attribute and hence "one size fits all" methodology might not satisfy all the users. True user satisfaction can be obtained only when the skyline is tailored specifically for each user based on his preferences.



This research investigates the problem of preference aware skyline processing which consists of inferring the preferences of users and computing a skyline specific to that user, taking into account his preferences. This research proposes a model that transforms the data from a given space to a user preferential space where each attribute represents the preference of the user. This study proposes two techniques "Preferential Skyline Processing" and "Latent Skyline Processing" to efficiently compute preference aware skylines in the user preferential space. Finally, through extensive experiments and performance analysis the correctness of the recommendations and the algorithm's ability to outperform the naïve ones is confirmed.
ContributorsRathinavelu, Sriram (Author) / Candan, Kasim Selcuk (Thesis advisor) / Davulcu, Hasan (Committee member) / Sarwat, Mohamed (Committee member) / Arizona State University (Publisher)
Created2014
153085-Thumbnail Image.png
Description
Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous

Advances in data collection technologies have made it cost-effective to obtain heterogeneous data from multiple data sources. Very often, the data are of very high dimension and feature selection is preferred in order to reduce noise, save computational cost and learn interpretable models. Due to the multi-modality nature of heterogeneous data, it is interesting to design efficient machine learning models that are capable of performing variable selection and feature group (data source) selection simultaneously (a.k.a bi-level selection). In this thesis, I carry out research along this direction with a particular focus on designing efficient optimization algorithms. I start with a unified bi-level learning model that contains several existing feature selection models as special cases. Then the proposed model is further extended to tackle the block-wise missing data, one of the major challenges in the diagnosis of Alzheimer's Disease (AD). Moreover, I propose a novel interpretable sparse group feature selection model that greatly facilitates the procedure of parameter tuning and model selection. Last but not least, I show that by solving the sparse group hard thresholding problem directly, the sparse group feature selection model can be further improved in terms of both algorithmic complexity and efficiency. Promising results are demonstrated in the extensive evaluation on multiple real-world data sets.
ContributorsXiang, Shuo (Author) / Ye, Jieping (Thesis advisor) / Mittelmann, Hans D (Committee member) / Davulcu, Hasan (Committee member) / He, Jingrui (Committee member) / Arizona State University (Publisher)
Created2014
153105-Thumbnail Image.png
Description
Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than

Interactive remote e-learning is one of the youngest and most popular methods that is used in today's teaching method. WebRTC, on the other hand, has become the popular concept and method in real time communication. Unlike the old fashioned Adobe Flash, user will communicate directly to each other rather than calling server as the middle man. The world is changing from plug-in to web-browser. However, the WebRTC have not been widely used for school education.

By taking into consideration of the WebRTC solution for data transferring, we propose a new Cloud based interactive multimedia which enables virtual lab learning environment. Three modules were proposed along with an efficient solution for achieving optimized network bandwidth. The One-to-Many communication was introduced in the video conferencing and scalability was tested for the application. The key technical contribution is to establish a sufficient system that designed to utilize the WebRTC in its best way in educational world in the Vlab platform and reduces the tool cost and improves online learning experience.
ContributorsLi, Qingyun (Author) / Huang, Dijiang (Thesis advisor) / Davulcu, Hasan (Committee member) / Dasgupta, Partha (Committee member) / Arizona State University (Publisher)
Created2014