This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153171-Thumbnail Image.png
Description
The role of environmental factors that influence atmospheric propagation of sound originating from freeway noise sources is studied with a combination of field experiments and numerical simulations. Acoustic propagation models are developed and adapted for refractive index depending upon meteorological conditions. A high-resolution multi-nested environmental forecasting model forced by coarse

The role of environmental factors that influence atmospheric propagation of sound originating from freeway noise sources is studied with a combination of field experiments and numerical simulations. Acoustic propagation models are developed and adapted for refractive index depending upon meteorological conditions. A high-resolution multi-nested environmental forecasting model forced by coarse global analysis is applied to predict real meteorological profiles at fine scales. These profiles are then used as input for the acoustic models. Numerical methods for producing higher resolution acoustic refractive index fields are proposed. These include spatial and temporal nested meteorological simulations with vertical grid refinement. It is shown that vertical nesting can improve the prediction of finer structures in near-ground temperature and velocity profiles, such as morning temperature inversions and low level jet-like features. Accurate representation of these features is shown to be important for modeling sound refraction phenomena and for enabling accurate noise assessment. Comparisons are made using the acoustic model for predictions with profiles derived from meteorological simulations and from field experiment observations in Phoenix, Arizona. The challenges faced in simulating accurate meteorological profiles at high resolution for sound propagation applications are highlighted and areas for possible improvement are discussed.



A detailed evaluation of the environmental forecast is conducted by investigating the Surface Energy Balance (SEB) obtained from observations made with an eddy-covariance flux tower compared with SEB from simulations using several physical parameterizations of urban effects and planetary boundary layer schemes. Diurnal variation in SEB constituent fluxes are examined in relation to surface layer stability and modeled diagnostic variables. Improvement is found when adapting parameterizations for Phoenix with reduced errors in the SEB components. Finer model resolution (to 333 m) is seen to have insignificant ($<1\sigma$) influence on mean absolute percent difference of 30-minute diurnal mean SEB terms. A new method of representing inhomogeneous urban development density derived from observations of impervious surfaces with sub-grid scale resolution is then proposed for mesoscale applications. This method was implemented and evaluated within the environmental modeling framework. Finally, a new semi-implicit scheme based on Leapfrog and a fourth-order implicit time-filter is developed.
ContributorsShaffer, Stephen R. (Author) / Moustaoui, Mohamed (Thesis advisor) / Mahalov, Alex (Committee member) / Fernando, Harindra J.S. (Committee member) / Ovenden, Nicholas C. (Committee member) / Huang, Huei-Ping (Committee member) / Calhoun, Ronald (Committee member) / Arizona State University (Publisher)
Created2014
151005-Thumbnail Image.png
Description
The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for detecting certain analytes in breath analysis the proposed system along

The project is mainly aimed at detecting the gas flow rate in Biosensors and medical health applications by means of an acoustic method using whistle based device. Considering the challenges involved in maintaining particular flow rate and back pressure for detecting certain analytes in breath analysis the proposed system along with a cell phone provides a suitable way to maintain the flow rate without any additional battery driven device. To achieve this, a system-level approach is implemented which involves development of a closed end whistle which is placed inside a tightly fitted constant back pressure tube. By means of experimentation pressure vs. flowrate curve is initially obtained and used for the development of the particular whistle. Finally, by means of an FFT code in a cell phone the flow rate vs. frequency characteristic curve is obtained. When a person respires through the device a whistle sound is generated which is captured by the cellphone microphone and a FFT analysis is performed to determine the frequency and hence the flow rate from the characteristic curve. This approach can be used to detect flow rate as low as low as 1L/min. The concept has been applied for the first time in this work to the development and optimization of a breath analyzer.
ContributorsRavichandran, Balaje Dhanram (Author) / Forzani, Erica (Thesis advisor) / Xian, Xiaojun (Committee member) / Huang, Huei-Ping (Committee member) / Arizona State University (Publisher)
Created2012