This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

153903-Thumbnail Image.png
Description
In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage

In the nano-regime many materials exhibit properties that are quite different from their bulk counterparts. These nano-properties have been shown to be useful in a wide range of applications with nanomaterials being used for catalysts, in energy production, as protective coatings, and in medical treatment. While there is no shortage of exciting and novel applications, the world of nanomaterials suffers from a lack of large scale manufacturing techniques. The current methods and equipment used for manufacturing nanomaterials are generally slow, expensive, potentially dangerous, and material specific. The research and widespread use of nanomaterials has undoubtedly been hindered by this lack of appropriate tooling. This work details the effort to create a novel nanomaterial synthesis and deposition platform capable of operating at industrial level rates and reliability.

The tool, referred to as Deppy, deposits material via hypersonic impaction, a two chamber process that takes advantage of compressible fluids operating in the choked flow regime to accelerate particles to up several thousand meters per second before they impact and stick to the substrate. This allows for the energetic separation of the synthesis and deposition processes while still behaving as a continuous flow reactor giving Deppy the unique ability to independently control the particle properties and the deposited film properties. While the ultimate goal is to design a tool capable of producing a broad range of nanomaterial films, this work will showcase Deppy's ability to produce silicon nano-particle films as a proof of concept.

By adjusting parameters in the upstream chamber the particle composition was varied from completely amorphous to highly crystalline as confirmed by Raman spectroscopy. By adjusting parameters in the downstream chamber significant variation of the film's density was achieved. Further it was shown that the system is capable of making these adjustments in each chamber without affecting the operation of the other.
ContributorsFirth, Peter (Author) / Holman, Zachary C (Thesis advisor) / Kozicki, Michael (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2015
161255-Thumbnail Image.png
Description
Design and development of optical sensors for the detection of specific targets, e.g., ions, molecules, proteins, light polarizations, is one of the most essential research topics in the field of nanophotonics that paves the way for significant technological progressions in chemical and biomarker detections, polarimetric imaging and other sensing related

Design and development of optical sensors for the detection of specific targets, e.g., ions, molecules, proteins, light polarizations, is one of the most essential research topics in the field of nanophotonics that paves the way for significant technological progressions in chemical and biomarker detections, polarimetric imaging and other sensing related applications. In this dissertation, three designs of optical sensors based on plasmonic and dielectric nanostructures are thoroughly studied for the applications in chemicals, biomarkers and light polarization detection. Firstly, a plasmonic nanoantenna structure, which is composed of complementary anisotropic nanobars and nanoapertures featuring strong localized electric field enhancement at nanogap region, demonstrates both high sensitivity refractometric detection and specific infrared fingerprint detection for chemical sensing. Specifically, the sensor can probe monolayer thin octadecanethiol with a large resonance shift of 136 nm and all four characteristic infrared fingerprints detected. Secondly, a bio-inspired double-layered metasurface structure, which is made of dielectric nanoantenna and plasmonic nanogratings, mediates strong optical chirality and enables the selection of circularly polarized light handedness (extinction ratio ≥ 35) with high transmission efficiency (≥ 80%). The structure can be further integrated on-chip with linear polarizers for highly precise full-Stokes polarimetric detection with minimum transmission loss. Lastly, a gold nanoparticle based colorimetric assay is designed for high sensitivity, specificity and rapid detection of infectious diseases related biomarkers. The complete design workflows from critical reagents productions, rapid detection protocol to assay characterizations are extensively studied. Detection of Ebola virus disease biomarker, secreted glycoprotein, within 20 minutes are experimentally demonstrated with limit of detection down to ~40 pM and a broad detection range from 10 pM to 1 µM. The designs of the three sensors propose novel and versatile design concepts for the development of sensing devices in the detection of chemicals, biomarkers and light polarization. The efforts in the fundamental theoretical analysis and experimental demonstrations are expected to provide valuable contents to the optical sensor researches and to potentially inspire new sensor designs for broad sensing applications in the future.
ContributorsChen, Xiahui (Author) / Wang, Chao (Thesis advisor) / Zhao, Yuji (Committee member) / Wang, Liping (Committee member) / Goryll, Michael (Committee member) / Arizona State University (Publisher)
Created2021