This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151367-Thumbnail Image.png
Description
This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on

This study focuses on implementing probabilistic nature of material properties (Kevlar® 49) to the existing deterministic finite element analysis (FEA) of fabric based engine containment system through Monte Carlo simulations (MCS) and implementation of probabilistic analysis in engineering designs through Reliability Based Design Optimization (RBDO). First, the emphasis is on experimental data analysis focusing on probabilistic distribution models which characterize the randomness associated with the experimental data. The material properties of Kevlar® 49 are modeled using experimental data analysis and implemented along with an existing spiral modeling scheme (SMS) and user defined constitutive model (UMAT) for fabric based engine containment simulations in LS-DYNA. MCS of the model are performed to observe the failure pattern and exit velocities of the models. Then the solutions are compared with NASA experimental tests and deterministic results. MCS with probabilistic material data give a good prospective on results rather than a single deterministic simulation results. The next part of research is to implement the probabilistic material properties in engineering designs. The main aim of structural design is to obtain optimal solutions. In any case, in a deterministic optimization problem even though the structures are cost effective, it becomes highly unreliable if the uncertainty that may be associated with the system (material properties, loading etc.) is not represented or considered in the solution process. Reliable and optimal solution can be obtained by performing reliability optimization along with the deterministic optimization, which is RBDO. In RBDO problem formulation, in addition to structural performance constraints, reliability constraints are also considered. This part of research starts with introduction to reliability analysis such as first order reliability analysis, second order reliability analysis followed by simulation technique that are performed to obtain probability of failure and reliability of structures. Next, decoupled RBDO procedure is proposed with a new reliability analysis formulation with sensitivity analysis, which is performed to remove the highly reliable constraints in the RBDO, thereby reducing the computational time and function evaluations. Followed by implementation of the reliability analysis concepts and RBDO in finite element 2D truss problems and a planar beam problem are presented and discussed.
ContributorsDeivanayagam, Arumugam (Author) / Rajan, Subramaniam D. (Thesis advisor) / Mobasher, Barzin (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2012
155076-Thumbnail Image.png
Description
Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in

Tall building developments are spreading across the globe at an ever-increasing rate (www.ctbuh.org). In 1982, the number of ‘tall buildings’ in North America was merely 1,701. This number rose to 26,053, in 2006. The global number of buildings, 200m or more in height, has risen from 286 to 602 in the last decade alone. This dissertation concentrates on design optimization of such, about-to-be modular, structures by implementing AISC 2010 design requirements. Along with a discussion on and classification of lateral load resisting systems, a few design optimization cases are also being studied. The design optimization results of full scale three dimensional buildings subject to multiple design criteria including stress, serviceability and dynamic response are discussed. The tool being used for optimization is GS-USA Frame3D© (henceforth referred to as Frame3D). Types of analyses being verified against a strong baseline of Abaqus 6.11-1, are stress analysis, modal analysis and buckling analysis.

The provisions in AISC 2010 allows us to bypass the limit state of flexural buckling in compression checks with a satisfactory buckling analysis. This grants us relief from the long and tedious effective length factor computations. Besides all the AISC design checks, an empirical equation to check beams with high shear and flexure is also being enforced.

In this study, we present the details of a tool that can be useful in design optimization - finite element modeling, translating AISC 2010 design code requirements into components of the FE and design optimization models. A comparative study of designs based on AISC 2010 and fixed allowable stresses, (regardless of the shape of cross section) is also being carried out.
ContributorsUnde, Yogesh (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2016
155636-Thumbnail Image.png
Description
The concept of Creep is a term used to define the tendency of stressed materials to develop an increasing strain through time under a sustained load, thus having an increase in deflection or having an elongation with time in relation to the short term strain. While the subject of compression

The concept of Creep is a term used to define the tendency of stressed materials to develop an increasing strain through time under a sustained load, thus having an increase in deflection or having an elongation with time in relation to the short term strain. While the subject of compression creep of concrete is well developed, use of concrete under tension loads has been limited at best due to brittleness of concrete. However with the advent of using fiber reinforced concrete, more and more applications where concrete is expected to carry tensile loads due to incorporation of fibers is gaining popularity. While the creep behavior of concrete in tension is important, the main case of the study is what happened when the concrete that is cracked in service is subjected to sustained loads causing creep. The relationship of opening cracks under these conditions are of utmost importance especially when the serviceability criteria is addressed. Little work has been reported in literature on the long-term behavior of FRC under sustained flexural loadings. The main objective of this study is to investigate the Long Term Flexural Behavior of Pre-Cracked Fiber Reinforced Beams under Sustained Loads. The experimental reports document the effect of loading and temperature on the creep characteristics of concrete. A variety of study has been carried out for the different responses generated by the creep tests based on factors like effect of temperature and humidity, effect of fiber content, effect of fiber type, and effect of different loading levels.

The Creep Testing Experimental Methodology is divided into three main parts which includes: (1) The Pre-cracking Partial Fracture Test; (2) Creep Test; (3) Post Creep Full Fracture Test. The magnitude of load applied to a specific specimen during creep testing was based on the results of average residual strength (ARS) tests, determined using EN14651. Specimens of the synthetic FRC mixture were creep tested at loads nominally equivalent to 30% and 50% of the FR1 value. The creep tests are usually continued until a steady Time versus CMOD response was obtained for the specimen signifying its presence in the secondary stage of creep. The creep recovery response is generated after unloading the specimen from the creep set up and later a full fracture test is carried out to obtain the complete post creep response of the beam under flexure.

The behavior of the Creep Coefficient versus Time response has been studied using various existing models like the ACI 209-R 92 Model and the CEB-FIP Model. Basic and hybrid rheological viscoelastic models have also been used in order to generate the material behavior response. A study has been developed in order to understand the applicability of various viscoelastic models for obtaining the material response of real materials. An analytical model for predicting the Flexural Behavior of FRC under sustained creep loads is presented at the end. This model helps generate the stress strain and Moment Curvature response of FRC beams when subjected to creep loads post initial cracking
ContributorsGohel, Megha Rajendrakumar (Author) / Mobasher, Barzin (Thesis advisor) / Dharmarajan, Subramaniam (Committee member) / Neithalath, Narayanan (Committee member) / Arizona State University (Publisher)
Created2017