This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 183
Filtering by

Clear all filters

152149-Thumbnail Image.png
Description
Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating

Traditional approaches to modeling microgrids include the behavior of each inverter operating in a particular network configuration and at a particular operating point. Such models quickly become computationally intensive for large systems. Similarly, traditional approaches to control do not use advanced methodologies and suffer from poor performance and limited operating range. In this document a linear model is derived for an inverter connected to the Thevenin equivalent of a microgrid. This model is then compared to a nonlinear simulation model and analyzed using the open and closed loop systems in both the time and frequency domains. The modeling error is quantified with emphasis on its use for controller design purposes. Control design examples are given using a Glover McFarlane controller, gain sched- uled Glover McFarlane controller, and bumpless transfer controller which are compared to the standard droop control approach. These examples serve as a guide to illustrate the use of multi-variable modeling techniques in the context of robust controller design and show that gain scheduled MIMO control techniques can extend the operating range of a microgrid. A hardware implementation is used to compare constant gain droop controllers with Glover McFarlane controllers and shows a clear advantage of the Glover McFarlane approach.
ContributorsSteenis, Joel (Author) / Ayyanar, Raja (Thesis advisor) / Mittelmann, Hans (Committee member) / Tsakalis, Konstantinos (Committee member) / Tylavsky, Daniel (Committee member) / Arizona State University (Publisher)
Created2013
151860-Thumbnail Image.png
Description
Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal

Cancer is the second leading cause of death in the United States and novel methods of treating advanced malignancies are of high importance. Of these deaths, prostate cancer and breast cancer are the second most fatal carcinomas in men and women respectively, while pancreatic cancer is the fourth most fatal in both men and women. Developing new drugs for the treatment of cancer is both a slow and expensive process. It is estimated that it takes an average of 15 years and an expense of $800 million to bring a single new drug to the market. However, it is also estimated that nearly 40% of that cost could be avoided by finding alternative uses for drugs that have already been approved by the Food and Drug Administration (FDA). The research presented in this document describes the testing, identification, and mechanistic evaluation of novel methods for treating many human carcinomas using drugs previously approved by the FDA. A tissue culture plate-based screening of FDA approved drugs will identify compounds that can be used in combination with the protein TRAIL to induce apoptosis selectively in cancer cells. Identified leads will next be optimized using high-throughput microfluidic devices to determine the most effective treatment conditions. Finally, a rigorous mechanistic analysis will be conducted to understand how the FDA-approved drug mitoxantrone, sensitizes cancer cells to TRAIL-mediated apoptosis.
ContributorsTaylor, David (Author) / Rege, Kaushal (Thesis advisor) / Jayaraman, Arul (Committee member) / Nielsen, David (Committee member) / Kodibagkar, Vikram (Committee member) / Dai, Lenore (Committee member) / Arizona State University (Publisher)
Created2013
151827-Thumbnail Image.png
Description
The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the

The object of this study was a 26 year old residential Photovoltaic (PV) monocrystalline silicon (c-Si) power plant, called Solar One, built by developer John F. Long in Phoenix, Arizona (a hot-dry field condition). The task for Arizona State University Photovoltaic Reliability Laboratory (ASU-PRL) graduate students was to evaluate the power plant through visual inspection, electrical performance, and infrared thermography. The purpose of this evaluation was to measure and understand the extent of degradation to the system along with the identification of the failure modes in this hot-dry climatic condition. This 4000 module bipolar system was originally installed with a 200 kW DC output of PV array (17 degree fixed tilt) and an AC output of 175 kVA. The system was shown to degrade approximately at a rate of 2.3% per year with no apparent potential induced degradation (PID) effect. The power plant is made of two arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the north array and the other thesis presents the results obtained on the south array. The resulting study showed that PV module design, array configuration, vandalism, installation methods and Arizona environmental conditions have had an effect on this system's longevity and reliability. Ultimately, encapsulation browning, higher series resistance (potentially due to solder bond fatigue) and non-cell interconnect ribbon breakages outside the modules were determined to be the primary causes for the power loss.
ContributorsBelmont, Jonathan (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Henderson, Mark (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2013
151332-Thumbnail Image.png
Description
Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells.

Dye sensitized solar cells (DSSCs) are currently being explored as a cheaper alternative to the more common silicon (Si) solar cell technology. In addition to the cost advantages, DSSCs show good performance in low light conditions and are not sensitive to varying angles of incident light like traditional Si cells. One of the major challenges facing DSSCs is loss of the liquid electrolyte, through evaporation or leakage, which lowers stability and leads to increased degradation. Current research with solid-state and quasi-solid DSSCs has shown success regarding a reduction of electrolyte loss, but at a cost of lower conversion efficiency output. The research work presented in this paper focuses on the effects of using nanoclay material as a gelator in the electrolyte of the DSSC. The data showed that the quasi-solid cells are more stable than their liquid electrolyte counterparts, and achieved equal or better I-V characteristics. The quasi-solid cells were fabricated with a gel electrolyte that was prepared by adding 7 wt% of Nanoclay, Nanomer® (1.31PS, montmorillonite clay surface modified with 15-35% octadecylamine and 0.5-5 wt% aminopropyltriethoxysilane, Aldrich) to the iodide/triiodide liquid electrolyte, (Iodolyte AN-50, Solaronix). Various gel concentrations were tested in order to find the optimal ratio of nanoclay to liquid. The gel electrolyte made with 7 wt% nanoclay was more viscous, but still thin enough to allow injection with a standard syringe. Batches of cells were fabricated with both liquid and gel electrolyte and were evaluated at STC conditions (25°C, 100 mW/cm2) over time. The gel cells achieved efficiencies as high as 9.18% compared to 9.65% achieved by the liquid cells. After 10 days, the liquid cell decreased to 1.75%, less than 20% of its maximum efficiency. By contrast, the gel cell's efficiency increased for two weeks, and did not decrease to 20% of maximum efficiency until 45 days. After several measurements, the liquid cells showed visible signs of leakage through the sealant, whereas the gel cells did not. This resistance to leakage likely contributed to the improved performance of the quasi-solid cells over time, and is a significant advantage over liquid electrolyte DSSCs.
ContributorsMain, Laura (Author) / Munukutla, Lakshmi (Thesis advisor) / Madakannan, Arunachalanadar (Committee member) / Polesky, Gerald (Committee member) / Arizona State University (Publisher)
Created2012
151340-Thumbnail Image.png
Description
Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell;

Potential induced degradation (PID) due to high system voltages is one of the major degradation mechanisms in photovoltaic (PV) modules, adversely affecting their performance due to the combined effects of the following factors: system voltage, superstrate/glass surface conductivity, encapsulant conductivity, silicon nitride anti-reflection coating property and interface property (glass/encapsulant; encapsulant/cell; encapsulant/backsheet). Previous studies carried out at ASU's Photovoltaic Reliability Laboratory (ASU-PRL) showed that only negative voltage bias (positive grounded systems) adversely affects the performance of commonly available crystalline silicon modules. In previous studies, the surface conductivity of the glass surface was obtained using either conductive carbon layer extending from the glass surface to the frame or humidity inside an environmental chamber. This thesis investigates the influence of glass surface conductivity disruption on PV modules. In this study, conductive carbon was applied only on the module's glass surface without extending to the frame and the surface conductivity was disrupted (no carbon layer) at 2cm distance from the periphery of frame inner edges. This study was carried out under dry heat at two different temperatures (60 °C and 85 °C) and three different negative bias voltages (-300V, -400V, and -600V). To replicate closeness to the field conditions, half of the selected modules were pre-stressed under damp heat for 1000 hours (DH 1000) and the remaining half under 200 hours of thermal cycling (TC 200). When the surface continuity was disrupted by maintaining a 2 cm gap from the frame to the edge of the conductive layer, as demonstrated in this study, the degradation was found to be absent or negligibly small even after 35 hours of negative bias at elevated temperatures. This preliminary study appears to indicate that the modules could become immune to PID losses if the continuity of the glass surface conductivity is disrupted at the inside boundary of the frame. The surface conductivity of the glass, due to water layer formation in a humid condition, close to the frame could be disrupted just by applying a water repelling (hydrophobic) but high transmittance surface coating (such as Teflon) or modifying the frame/glass edges with water repellent properties.
ContributorsTatapudi, Sai Ravi Vasista (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151359-Thumbnail Image.png
Description
Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are

Cancer is one of the most serious global diseases. We have focused on cancer immunoprevention. My thesis projects include developing a prophylactic primary and metastatic cancer vaccines, early cancer detection and investigation of genes involved in tumor development. These studies were focused on frame-shift (FS) antigens. The FS antigens are generated by genomic mutations or abnormal RNA processing, which cause a portion of a normal protein to be translated out of frame. The concept of the prophylactic cancer vaccine is to develop a general cancer vaccine that could prevent healthy people from developing different types of cancer. We have discovered a set of cancer specific FS antigens. One of the FS candidates, structural maintenance of chromosomes protein 1A (SMC1A) FS, could start to accumulate at early stages of tumor and be specifically exposed to the immune system by tumor cells. Prophylactic immunization with SMC1A-FS could significantly inhibit primary tumor development in different murine tumor models and also has the potential to inhibit tumor metastasis. The SMC1A-FS transcript was detected in the plasma of the 4T1/BALB/c mouse tumor model. The tumor size was correlated with the transcript ratio of the SMC1A-FS verses the WT in plasma, which could be measured by regular RT-PCR. This unique cancer biomarker has a practical potential for a large population cancer screen, as well as clinical tumor monitoring. With a set of mimotope peptides, antibodies against SMC1A-FS peptide were detected in different cancer patients, including breast cancer, pancreas cancer and lung cancer with a 53.8%, 56.5% and 12.5% positive rate respectively. This suggested that the FS antibody could be a biomarker for early cancer detection. The characterization of SMC1A suggested that: First, the deficiency of the SMC1A is common in different tumors and able to promote tumor initiation and development; second, the FS truncated protein may have nucleolus function in normal cells. Mis-control of this protein may promote tumor development. In summary, we developed a systematic general cancer prevention strategy through the variety immunological and molecular methods. The results gathered suggest the SMC1A-FS may be useful for the detection and prevention of cancer.
ContributorsShen, Luhui (Author) / Johnston, Stephen Albert (Thesis advisor) / Chang, Yung (Committee member) / Miller, Laurence (Committee member) / Sykes, Kathryn (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2012
151374-Thumbnail Image.png
Description
ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year

ABSTRACT As the use of photovoltaic (PV) modules in large power plants continues to increase globally, more studies on degradation, reliability, failure modes, and mechanisms of field aged modules are needed to predict module life expectancy based on accelerated lifetime testing of PV modules. In this work, a 26+ year old PV power plant in Phoenix, Arizona has been evaluated for performance, reliability, and durability. The PV power plant, called Solar One, is owned and operated by John F. Long's homeowners association. It is a 200 kWdc, standard test conditions (STC) rated power plant comprised of 4000 PV modules or frameless laminates, in 100 panel groups (rated at 175 kWac). The power plant is made of two center-tapped bipolar arrays, the north array and the south array. Due to a limited time frame to execute this large project, this work was performed by two masters students (Jonathan Belmont and Kolapo Olakonu) and the test results are presented in two masters theses. This thesis presents the results obtained on the south array and the other thesis presents the results obtained on the north array. Each of these two arrays is made of four sub arrays, the east sub arrays (positive and negative polarities) and the west sub arrays (positive and negative polarities), making up eight sub arrays. The evaluation and analyses of the power plant included in this thesis consists of: visual inspection, electrical performance measurements, and infrared thermography. A possible presence of potential induced degradation (PID) due to potential difference between ground and strings was also investigated. Some installation practices were also studied and found to contribute to the power loss observed in this investigation. The power output measured in 2011 for all eight sub arrays at STC is approximately 76 kWdc and represents a power loss of 62% (from 200 kW to 76 kW) over 26+ years. The 2011 measured power output for the four south sub arrays at STC is 39 kWdc and represents a power loss of 61% (from 100 kW to 39 kW) over 26+ years. Encapsulation browning and non-cell interconnect ribbon breakages were determined to be the primary causes for the power loss.
ContributorsOlakonu, Kolapo (Author) / Tamizhmani, Govindasamy (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012
151292-Thumbnail Image.png
Description
In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be

In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle.
ContributorsChakravadhanula, Madhavi (Author) / Capco, David G. (Thesis advisor) / Chandler, Douglas (Committee member) / Clark-Curtiss, Josephine (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2012
151566-Thumbnail Image.png
Description
The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources

The past few decades have seen a consistent growth of distributed PV sources. Distributed PV, like other DG sources, can be located at or near load centers and provide benefits which traditional generation may lack. However, distribution systems were not designed to accommodate such power generation sources as these sources might lead to operational as well as power quality issues. A high penetration of distributed PV resources may lead to bi-directional power flow resulting in voltage swells, increased losses and overloading of conductors. Voltage unbalance is a concern in distribution systems and the effect of single-phase residential PV systems on voltage unbalance needs to be explored. Furthermore, the islanding of DGs presents a technical hurdle towards the seamless integration of DG sources with the electricity grid. The work done in this thesis explores two important aspects of grid inte-gration of distributed PV generation, namely, the impact on power quality and anti-islanding. A test distribution system, representing a realistic distribution feeder in Arizona is modeled to study both the aforementioned aspects. The im-pact of distributed PV on voltage profile, voltage unbalance and distribution sys-tem primary losses are studied using CYMDIST. Furthermore, a PSCAD model of the inverter with anti-island controls is developed and the efficacy of the anti-islanding techniques is studied. Based on the simulations, generalized conclusions are drawn and the problems/benefits are elucidated.
ContributorsMitra, Parag (Author) / Heydt, Gerald T (Thesis advisor) / Vittal, Vijay (Thesis advisor) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2013
151426-Thumbnail Image.png
Description
While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and

While the piezoelectric effect has been around for some time, it has only recently caught interest as a potential sustainable energy harvesting device. Piezoelectric energy harvesting has been developed for shoes and panels, but has yet to be integrated into a marketable bicycle tire. For this thesis, the development and feasibility of a piezoelectric tire was done. This includes the development of a circuit that incorporates piezoceramic elements, energy harvesting circuitry, and an energy storage device. A single phase circuit was designed using an ac-dc diode rectifier. An electrolytic capacitor was used as the energy storage device. A financial feasibility was also done to determine targets for manufacturing cost and sales price. These models take into account market trends for high performance tires, economies of scale, and the possibility of government subsidies. This research will help understand the potential for the marketability of a piezoelectric energy harvesting tire that can create electricity for remote use. This study found that there are many obstacles that must be addressed before a piezoelectric tire can be marketed to the general public. The power output of this device is miniscule compared to an alkaline battery. In order for this device to approach the power output of an alkaline battery the weight of the device would also become an issue. Additionally this device is very costly compared to the average bicycle tire. Lastly, this device is extreme fragile and easily broken. In order for this device to become marketable the issues of power output, cost, weight, and durability must all be successfully overcome.
ContributorsMalotte, Christopher (Author) / Madakannan, Arunachalanadar (Thesis advisor) / Srinivasan, Devarajan (Committee member) / Rogers, Bradley (Committee member) / Arizona State University (Publisher)
Created2012