This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

154824-Thumbnail Image.png
Description
The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small

The ability to manipulate the interaction between small molecules and biological macromolecules towards the study of disease pathogenesis has become a very important part of research towards treatment options for various diseases. The work described here shows both the use of DNA oligonucleotides as carriers for a nicotine hapten small molecule, and the use of microsomes to study the stability of compounds derived to treat mitochondrial diseases.

Nicotine addiction is a worldwide epidemic because nicotine is one of the most widely used addictive substances. It is linked to early death, typically in the form of heart or lung disease. A new vaccine conjugate against nicotine held within a DNA tetrahedron delivery system has been studied. For this purpose, several strands of DNA, conjugated with a modified dTpT having three or six carbon atom alkynyl linkers, have been synthesized. These strands have later been conjugated to three separate hapten small molecules to analyze which conjugates formed would be optimal for further testing in vivo.

Mitochondrial diseases are hard to treat, given that there are so many different variations to treat. There is no one compound that can treat all mitochondrial and neurodegenerative diseases; however, improvements can be made to compounds currently under study to improve the conditions of those afflicted. A significant issue leading to compounds failing in clinical trials is insufficient metabolic stability. Many compounds have good biological activity, but once introduced to an animal, are not stable enough to have any effect. Here, several synthesized compounds have been evaluated for metabolic stability, and several showed improved stability, while maintaining biological activity.
ContributorsSchmierer, Margaret (Author) / Hecht, Sidney M. (Thesis advisor) / Allen, James (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
154306-Thumbnail Image.png
Description
Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First,

Charge transport in molecular systems, including DNA (Deoxyribonucleic acid), is involved in many basic chemical and biological processes. Studying their charge transport properties can help developing DNA based electronic devices with many tunable functionalities. This thesis investigates the electric properties of double-stranded DNA, DNA G-quadruplex and dsDNA with modified base.

First, double-stranded DNA with alternating GC sequence and stacked GC sequence were measured with respect to length. The resistance of DNA sequences increases linearly with length, indicating a hopping transport mechanism. However, for DNA sequences with stacked GC, a periodic oscillation is superimposed on the linear length dependence, indicating a partial coherent transport. The result is supported by the finding of delocalization of the highest occupied molecular orbitals of Guanines from theoretical simulation and by fitting based on the Büttiker’s theory.

Then, a DNA G4-duplex structures with a G-quadruplex as the core and DNA duplexes as the arms were studied. Similar conductance values were observed by varying the linker positions, thus a charge splitter is developed. The conductance of the DNA G-tetrads structures was found to be sensitive to the π-stacking at the interface between the G-quadruplex and DNA duplexes by observing a higher conductance value when one duplex was removed and a polyethylene glycol (PEG) linker was added into the interface. This was further supported by molecular dynamic simulations.

Finally, a double-stranded DNA with one of the bases replaced by an anthraquinone group was studied via electrochemical STM break junction technique. Anthraquinone can be reversibly switched into the oxidized state or reduced state, to give a low conductance or high conductance respectively. Furthermore, the thermodynamics and kinetics properties of the switching were systematically studied. Theoretical simulation shows that the difference between the two states is due to a difference in the energy alignment with neighboring Guanine bases.
ContributorsXiang, Liming (Author) / Tao, Nongjian (Thesis advisor) / Lindsay, Stuart (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2016
152676-Thumbnail Image.png
Description
Reactive oxygen species (ROS) are a series of molecules, ions, and radicals derived from oxygen that possess remarkable reactivity. They act as signaling molecules when their concentration in cells is within a normal range. When the levels of ROS increase, reaching a concentration in which the antioxidants cannot readily quench

Reactive oxygen species (ROS) are a series of molecules, ions, and radicals derived from oxygen that possess remarkable reactivity. They act as signaling molecules when their concentration in cells is within a normal range. When the levels of ROS increase, reaching a concentration in which the antioxidants cannot readily quench them, oxidative stress will affect the cells. These excessive levels of ROS result in direct or indirect ROS-mediated damage of proteins, nucleic acids, and lipids. Excessive oxidative stress, particularly in chronic inflammation, has been linked with mutations and carcinogenesis. One of the main targets of ROS in severe oxidative stress is mitochondrial DNA (mtDNA). The synthesis of analogues of alpha-tocopherol is described as potential compounds with the ability to remediate defective mitochondria. An interesting possibility for eradicating cancer cells is to selectively target them with oxidative species while avoiding any deleterious effects on healthy cells. To accomplish this, analogues of the beta-hydroxyhistidine moiety of the antitumor agent bleomycin (BLM) were synthesized. The first part of this thesis focuses on the synthesis of simplified analogues of alpha-tocopherol. These analogues possess a bicyclic pyridinol as the antioxidant core and an alkyl group as the lipophilic chain to mimic alpha-tocopherol. Additionally, analogues with a completely oxidized pyridinol core were synthesized. Some of these analogues showed promising properties against ROS production and lipid peroxidation. The protection they conferred was shown to be tightly regulated by their concentration. The second part of this thesis focuses on the synthesis of analogues of beta-hydroxyhistidine. BLMs are glycopeptides that possess anticancer activity and have been used to treat testicular carcinomas, Hodgkin's lymphoma, and squamous cell carcinomas. The activity of BLM is based on the degradation of DNA, or possibly RNA, caused by a Fe(II)-BLM complex in the presence of O2. The beta-hydroxyhistidine moiety of BLM contributes to metal coordination via two ligands: the N-3 nitrogen atom of imidazole and possibly the nitrogen atom of the amide. A series of beta-hydroxyhistidine analogues has successfully been synthesized.
ContributorsArmendáriz Guajardo, José Israel (Author) / Hecht, Sidney M. (Thesis advisor) / Moore, Ana (Committee member) / Gould, Ian (Committee member) / Arizona State University (Publisher)
Created2014