This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

171883-Thumbnail Image.png
Description
With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way

With the continued increase in the amount of renewable generation in the formof distributed energy resources, reliability planning has progressively become a more challenging task for the modern power system. This is because with higher penetration of renewable generation, the system has to bear a higher degree of variability and uncertainty. One way to address this problem is by generating realistic scenarios that complement and supplement actual system conditions. This thesis presents a methodology to create such correlated synthetic scenarios for load and renewable generation using machine learning. Machine learning algorithms need to have ample amounts of data available to them for training purposes. However, real-world datasets are often skewed in the distribution of the different events in the sample space. Data augmentation and scenario generation techniques are often utilized to complement the datasets with additional samples or by filling in missing data points. Datasets pertaining to the electric power system are especially prone to having very few samples for certain events, such as abnormal operating conditions, as they are not very common in an actual power system. A recurrent generative adversarial network (GAN) model is presented in this thesis to generate solar and load scenarios in a correlated manner using an actual dataset obtained from a power utility located in the U.S. Southwest. The generated solar and load profiles are verified both statistically and by implementation on a simulated test system, and the performance of correlated scenario generation vs. uncorrelated scenario generation is investigated. Given the interconnected relationships between the variables of the dataset, it is observed that correlated scenario generation results in more realistic synthetic scenarios, particularly for abnormal system conditions. When combined with actual but scarce abnormal conditions, the augmented dataset of system conditions provides a better platform for performing contingency studies for a more thorough reliability planning. The proposed scenario generation method is scalable and can be modified to work with different time-series datasets. Moreover, when the model is trained in a conditional manner, it can be used to synthesise any number of scenarios for the different events present in a given dataset. In summary, this thesis explores scenario generation using a recurrent conditional GAN and investigates the benefits of correlated generation compared to uncorrelated synthesis of profiles for the reliability planning problem of power systems.
ContributorsBilal, Muhammad (Author) / Pal, Anamitra (Thesis advisor) / Holbert, Keith (Committee member) / Ayyanar, Raja (Committee member) / Arizona State University (Publisher)
Created2022
161658-Thumbnail Image.png
Description
Nowadays, the widespread use of distributed generators (DGs) raises significant challenges for the design, planning, and operation of power systems. To avoid the harm caused by excessive DGs, evaluating the reliability and sustainability of the system with high penetration of DGs is essential. The concept of hosting capacity (HC) is

Nowadays, the widespread use of distributed generators (DGs) raises significant challenges for the design, planning, and operation of power systems. To avoid the harm caused by excessive DGs, evaluating the reliability and sustainability of the system with high penetration of DGs is essential. The concept of hosting capacity (HC) is used to achieve this purpose. It is to assess the capability of a distribution grid to accommodate DGs without causing damage or updating facilities. To obtain the HC value, traditional HC analysis methods face many problems, including the computational difficulties caused by the large-scale simulations and calculations, lacking the considering temporal correlation from data to data, and the inefficient on real-time analysis. This paper proposes a machine learning-based method, the Spatial-Temporal Long Short-Term Memory (ST-LSTM), to overcome these drawbacks using the traditional HC analysis method. This method will significantly reduce the requirement of calculations and simulations, and obtain HC results in real-time. Using the time-series load profiles and the longest path method, ST-LSTMs can capture the temporal information and spatial information respectively. Moreover, compared with the basic Long Short-Term Memory (LSTM) model, this modified model will improve the performance in the HC analysis by some specific designs, which are the sensitivity gate to consider voltage sensitivity information, the dual forget gates to build spatial and temporal correlation.
ContributorsWu, Jiaqi (Author) / Weng, Yang (Thesis advisor) / Ayyanar, Raja (Committee member) / Cook, Elizabeth (Committee member) / Arizona State University (Publisher)
Created2021