This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 28
Filtering by

Clear all filters

150025-Thumbnail Image.png
Description
With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is

With the increasing focus on developing environmentally benign electronic packages, lead-free solder alloys have received a great deal of attention. Mishandling of packages, during manufacture, assembly, or by the user may cause failure of solder joint. A fundamental understanding of the behavior of lead-free solders under mechanical shock conditions is lacking. Reliable experimental and numerical analysis of lead-free solder joints in the intermediate strain rate regime need to be investigated. This dissertation mainly focuses on exploring the mechanical shock behavior of lead-free tin-rich solder alloys via multiscale modeling and numerical simulations. First, the macroscopic stress/strain behaviors of three bulk lead-free tin-rich solders were tested over a range of strain rates from 0.001/s to 30/s. Finite element analysis was conducted to determine appropriate specimen geometry that could reach a homogeneous stress/strain field and a relatively high strain rate. A novel self-consistent true stress correction method is developed to compensate the inaccuracy caused by the triaxial stress state at the post-necking stage. Then the material property of micron-scale intermetallic was examined by micro-compression test. The accuracy of this measure is systematically validated by finite element analysis, and empirical adjustments are provided. Moreover, the interfacial property of the solder/intermetallic interface is investigated, and a continuum traction-separation law of this interface is developed from an atomistic-based cohesive element method. The macroscopic stress/strain relation and microstructural properties are combined together to form a multiscale material behavior via a stochastic approach for both solder and intermetallic. As a result, solder is modeled by porous plasticity with random voids, and intermetallic is characterized as brittle material with random vulnerable region. Thereafter, the porous plasticity fracture of the solders and the brittle fracture of the intermetallics are coupled together in one finite element model. Finally, this study yields a multiscale model to understand and predict the mechanical shock behavior of lead-free tin-rich solder joints. Different fracture patterns are observed for various strain rates and/or intermetallic thicknesses. The predictions have a good agreement with the theory and experiments.
ContributorsFei, Huiyang (Author) / Jiang, Hanqing (Thesis advisor) / Chawla, Nikhilesh (Thesis advisor) / Tasooji, Amaneh (Committee member) / Mobasher, Barzin (Committee member) / Rajan, Subramaniam D. (Committee member) / Arizona State University (Publisher)
Created2011
150550-Thumbnail Image.png
Description
Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National

Ultra-concealable multi-threat body armor used by law-enforcement is a multi-purpose armor that protects against attacks from knife, spikes, and small caliber rounds. The design of this type of armor involves fiber-resin composite materials that are flexible, light, are not unduly affected by environmental conditions, and perform as required. The National Institute of Justice (NIJ) characterizes this type of armor as low-level protection armor. NIJ also specifies the geometry of the knife and spike as well as the strike energy levels required for this level of protection. The biggest challenges are to design a thin, lightweight and ultra-concealable armor that can be worn under street clothes. In this study, several fundamental tasks involved in the design of such armor are addressed. First, the roles of design of experiments and regression analysis in experimental testing and finite element analysis are presented. Second, off-the-shelf materials available from international material manufacturers are characterized via laboratory experiments. Third, the calibration process required for a constitutive model is explained through the use of experimental data and computer software. Various material models in LS-DYNA for use in the finite element model are discussed. Numerical results are generated via finite element simulations and are compared against experimental data thus establishing the foundation for optimizing the design.
ContributorsVokshi, Erblina (Author) / Rajan, Subramaniam D. (Thesis advisor) / Neithalath, Narayanan (Committee member) / Mobasher, Barzin (Committee member) / Arizona State University (Publisher)
Created2012
155916-Thumbnail Image.png
Description
Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in

Aluminum alloys are ubiquitously used in almost all structural applications due to their high strength-to-weight ratio. Their superior mechanical performance can be attributed to complex dispersions of nanoscale intermetallic particles that precipitate out from the alloy’s solid solution and offer resistance to deformation. Although they have been extensively investigated in the last century, the traditional approaches employed in the past haven’t rendered an authoritative microstructural understanding in such materials. The effect of the precipitates’ inherent complex morphology and their three-dimensional (3D) spatial distribution on evolution and deformation behavior have often been precluded. In this study, for the first time, synchrotron-based hard X-ray nano-tomography has been implemented in Al-Cu alloys to measure growth kinetics of different nanoscale phases in 3D and reveal mechanistic insights behind some of the observed novel phase transformation reactions occurring at high temperatures. The experimental results were reconciled with coarsening models from the LSW theory to an unprecedented extent, thereby establishing a new paradigm for thermodynamic analysis of precipitate assemblies. By using a unique correlative approach, a non-destructive means of estimating precipitation-strengthening in such alloys has been introduced. Limitations of using existing mechanical strengthening models in such alloys have been discussed and a means to quantify individual contributions from different strengthening mechanisms has been established.

The current rapid pace of technological progress necessitates the demand for more resilient and high-performance alloys. To achieve this, a thorough understanding of the relationships between material properties and its structure is indispensable. To establish this correlation and achieve desired properties from structural alloys, microstructural response to mechanical stimuli needs to be understood in three-dimensions (3D). To that effect, in situ tests were conducted at the synchrotron (Advanced Photon Source) using Transmission X-Ray Microscopy as well as in a scanning electron microscope (SEM) to study real-time damage evolution in such alloys. Findings of precipitate size-dependent transition in deformation behavior from these tests have inspired a novel resilient aluminum alloy design.
ContributorsKaira, Chandrashekara Shashank (Author) / Chawla, Nikhilesh (Thesis advisor) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / De Andrade, Vincent (Committee member) / Arizona State University (Publisher)
Created2017
156132-Thumbnail Image.png
Description
Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium

Interstitial impurity atoms can significantly alter the chemical and physical properties of the host material. Oxygen impurity in HCP titanium is known to have a considerable strengthening effect mainly through interactions with dislocations. To better understand such an effect, first the role of oxygen on various slip planes in titanium is examined using generalized stacking fault energies (GSFE) computed by the first principles calculations. It is shown that oxygen can significantly increase the energy barrier to dislocation motion on most of the studied slip planes. Then the Peierls-Nabbaro model is utilized in conjunction with the GSFE to estimate the Peierls stress ratios for different slip systems. Using such information along with a set of tension and compression experiments, the parameters of a continuum scale crystal plasticity model, namely CRSS values, are calibrated. Effect of oxygen content on the macroscopic stress-strain response is further investigated through experiments on oxygen-boosted samples at room temperature. It is demonstrated that the crystal plasticity model can very well capture the effect of oxygen content on the global response of the samples. It is also revealed that oxygen promotes the slip activity on the pyramidal planes.

The effect of oxygen impurity on titanium is further investigated under high cycle fatigue loading. For that purpose, a two-step hierarchical crystal plasticity for fatigue predictions is presented. Fatigue indicator parameter is used as the main driving force in an energy-based crack nucleation model. To calculate the FIPs, high-resolution full-field crystal plasticity simulations are carried out using a spectral solver. A nucleation model is proposed and calibrated by the fatigue experimental data for notched titanium samples with different oxygen contents and under two load ratios. Overall, it is shown that the presented approach is capable of predicting the high cycle fatigue nucleation time. Moreover, qualitative predictions of microstructurally small crack growth rates are provided. The multi-scale methodology presented here can be extended to other material systems to facilitate a better understanding of the fundamental deformation mechanisms, and to effectively implement such knowledge in mesoscale-macroscale investigations.
ContributorsGholami Bazehhour, Benyamin (Author) / Solanki, Kiran N (Thesis advisor) / Liu, Yongming (Committee member) / Oswald, Jay J (Committee member) / Rajagopalan, Jagannathan (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2018
156953-Thumbnail Image.png
Description
Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures

Advanced material systems refer to materials that are comprised of multiple traditional constituents but complex microstructure morphologies, which lead to their superior properties over conventional materials. This dissertation is motivated by the grand challenge in accelerating the design of advanced material systems through systematic optimization with respect to material microstructures or processing settings. While optimization techniques have mature applications to a large range of engineering systems, their application to material design meets unique challenges due to the high dimensionality of microstructures and the high costs in computing process-structure-property (PSP) mappings. The key to addressing these challenges is the learning of material representations and predictive PSP mappings while managing a small data acquisition budget. This dissertation thus focuses on developing learning mechanisms that leverage context-specific meta-data and physics-based theories. Two research tasks will be conducted: In the first, we develop a statistical generative model that learns to characterize high-dimensional microstructure samples using low-dimensional features. We improve the data efficiency of a variational autoencoder by introducing a morphology loss to the training. We demonstrate that the resultant microstructure generator is morphology-aware when trained on a small set of material samples, and can effectively constrain the microstructure space during material design. In the second task, we investigate an active learning mechanism where new samples are acquired based on their violation to a theory-driven constraint on the physics-based model. We demonstrate using a topology optimization case that while data acquisition through the physics-based model is often expensive (e.g., obtaining microstructures through simulation or optimization processes), the evaluation of the constraint can be far more affordable (e.g., checking whether a solution is optimal or equilibrium). We show that this theory-driven learning algorithm can lead to much improved learning efficiency and generalization performance when such constraints can be derived. The outcomes of this research is a better understanding of how physics knowledge about material systems can be integrated into machine learning frameworks, in order to achieve more cost-effective and reliable learning of material representations and predictive models, which are essential to accelerate computational material design.
ContributorsCang, Ruijin (Author) / Ren, Yi (Thesis advisor) / Liu, Yongming (Committee member) / Jiao, Yang (Committee member) / Nian, Qiong (Committee member) / Zhuang, Houlong (Committee member) / Arizona State University (Publisher)
Created2018
Description
A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior

A comprehensive study was performed on non-proprietary ultra-high-performance concrete (UHPC) material and several design methods were suggested based on numerous experimental results. Several sets of compression tests, direct tensile tests, and flexural tests were performed on UHPC to provide a better understanding of the mechanisms involved in the mechanical behavior of the fiber reinforced material. In addition to compressive tests, flexural tests, based on ASTM C1609 and EN 14651, were performed. The effect of the strain rate on the UHPC material was also investigated through the high-speed tensile tests at different strain rates. Alongside the usual measurement tools such as linear variable differential transformers (LVDT) and clip gages, digital image correlation (DIC) method was also used to capture the full-range deformations in the samples and localized crack propagations. Analytical approaches were suggested, based on the experimental results of the current research and other research groups, to provide design solutions for different applications and design approaches for UHPC and hybrid reinforced concrete (HRC) sections. The suggested methods can be used both in the ultimate limit state (ULS) and the serviceability limit state (SLS) design methods. Closed form relationships, based on the non-linear design of reinforced concrete, were used in the calculation of the load-deflection response of UHPC. The procedures were used in obtaining material properties from the flexural data using procedures that are based on back-calculation of material properties from the experimental results. Model simulations were compared with other results available in the literature. Performance of flexural reinforced UHPC concrete beam sections tested under different types of loading was addressed using a combination of fibers and rebars. The same analytical approach was suggested for the fiber reinforced concrete (FRC) sections strengthened (rehabilitated) by fiber reinforced polymers (FRP) and textile reinforced concrete (TRC). The objective is to validate the proper design procedures for flexural members as well as connection elements. The proposed solutions can be used to reduce total reinforcement by means of increasing the ductility of the FRC, HRC, and UHPC members in order to meet the required flexural reinforcement, which in some cases leads to total elimination of rebars.
ContributorsKianmofrad, Farrokh (Author) / Mobasher, Barzin (Thesis advisor) / Rajan, Subramaniam Dharma (Committee member) / Hoover, Christian G. (Committee member) / Arizona State University (Publisher)
Created2018
153841-Thumbnail Image.png
Description
Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The

Fracture phenomena have been extensively studied in the last several decades. Continuum mechanics-based approaches, such as finite element methods and extended finite element methods, are widely used for fracture simulation. One well-known issue of these approaches is the stress singularity resulted from the spatial discontinuity at the crack tip/front. The requirement of guiding criteria for various cracking behaviors, such as initiation, propagation, and branching, also poses some challenges. Comparing to the continuum based formulation, the discrete approaches, such as lattice spring method, discrete element method, and peridynamics, have certain advantages when modeling various fracture problems due to their intrinsic characteristics in modeling discontinuities.

A novel, alternative, and systematic framework based on a nonlocal lattice particle model is proposed in this study. The uniqueness of the proposed model is the inclusion of both pair-wise local and multi-body nonlocal potentials in the formulation. First, the basic ideas of the proposed framework for 2D isotropic solid are presented. Derivations for triangular and square lattice structure are discussed in detail. Both mechanical deformation and fracture process are simulated and model verification and validation are performed with existing analytical solutions and experimental observations. Following this, the extension to general 3D isotropic solids based on the proposed local and nonlocal potentials is given. Three cubic lattice structures are discussed in detail. Failure predictions using the 3D simulation are compared with experimental testing results and very good agreement is observed. Next, a lattice rotation scheme is proposed to account for the material orientation in modeling anisotropic solids. The consistency and difference compared to the classical material tangent stiffness transformation method are discussed in detail. The implicit and explicit solution methods for the proposed lattice particle model are also discussed. Finally, some conclusions and discussions based on the current study are drawn at the end.
ContributorsChen, Hailong (Author) / Liu, Yongming (Thesis advisor) / Jiao, Yang (Committee member) / Mignolet, Marc (Committee member) / Oswald, Jay (Committee member) / Solanki, Kiran (Committee member) / Arizona State University (Publisher)
Created2015
154897-Thumbnail Image.png
Description
An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating

An integrated experimental and numerical investigation for laser-generated optoacoustic wave propagation in structural materials is performed. First, a multi-physics simulation model is proposed to simulate the pulsed laser as a point heat source which hits the surface of an aluminum sheet. The pulsed laser source can generate a localized heating on the surface of the plate and induce an in-plane stress wave. ANSYS – a finite element analysis software – is used to build the 3D model and a coupled thermal-mechanical simulation is performed in which the heat flux is determined by an empirical laser-heat conversion relationship. The displacement and stress field-histories are obtained to get the time of arrival and wave propagation speed of the stress wave. The effect of an added point mass is investigated in detail to observe the local material perturbation and remote wave signals. Following this, the experimental investigation of optoacoustic wave is also performed. A new experimental setup and control is developed and assembled in-house. Various laser firing parameters are investigated experimentally and the optimal combination is used for the experimental testing. Matrix design for different testing conditions is also proposed to include the effect of wave path, sampling procedure, and local point mass on the optoacoustic wave propagation. The developed numerical simulation results are validated with experimental observations. It is shown that the proposed experimental setup can offer a potential fast scanning method for damage detection (local property change) for plate-like structural component.
ContributorsLiu, Chen (Author) / Liu, Yongming (Thesis advisor) / Wang, Liping (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
154828-Thumbnail Image.png
Description
Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their

Improved knowledge connecting the chemistry, structure, and properties of polymers is necessary to develop advanced materials in a materials-by-design approach. Molecular dynamics (MD) simulations can provide tremendous insight into how the fine details of chemistry, molecular architecture, and microstructure affect many physical properties; however, they face well-known restrictions in their applicable temporal and spatial scales. These limitations have motivated the development of computationally-efficient, coarse-grained methods to investigate how microstructural details affect thermophysical properties. In this dissertation, I summarize my research work in structure-based coarse-graining methods to establish the link between molecular-scale structure and macroscopic properties of two different polymers. Systematically coarse-grained models were developed to study the viscoelastic stress response of polyurea, a copolymer that segregates into rigid and viscous phases, at time scales characteristic of blast and impact loading. With the application of appropriate scaling parameters, the coarse-grained models can predict viscoelastic properties with a speed up of 5-6 orders of magnitude relative to the atomistic MD models. Coarse-grained models of polyethylene were also created to investigate the thermomechanical material response under shock loading. As structure-based coarse-grained methods are generally not transferable to states different from which they were calibrated at, their applicability for modeling non-equilibrium processes such as shock and impact is highly limited. To address this problem, a new model is developed that incorporates many-body interactions and is calibrated across a range of different thermodynamic states using a least square minimization scheme. The new model is validated by comparing shock Hugoniot properties with atomistic and experimental data for polyethylene. Lastly, a high fidelity coarse-grained model of polyethylene was constructed that reproduces the joint-probability distributions of structural variables such as the distributions of bond lengths and bond angles between sequential coarse-grained sites along polymer chains. This new model accurately represents the structure of both the amorphous and crystal phases of polyethylene and enabling investigation of how polymer processing such as cold-drawing and bulk crystallization affect material structure at significantly larger time and length scales than traditional molecular simulations.
ContributorsAgrawal, Vipin (Author) / Oswald, Jay (Thesis advisor) / Peralta, Pedro (Committee member) / Chamberlin, Ralph (Committee member) / Solanki, Kiran (Committee member) / Jiao, Yang (Committee member) / Arizona State University (Publisher)
Created2016
155464-Thumbnail Image.png
Description
A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for

A hybrid molecular dynamics (MD) simulation framework is developed to emulate mechanochemical reaction of mechanophores in epoxy-based nanocomposites. Two different force fields, a classical force field and a bond order based force field are hybridized to mimic the experimental processes from specimen preparation to mechanical loading test. Ultra-violet photodimerization for mechanophore synthesis and epoxy curing for thermoset polymer generation are successfully simulated by developing a numerical covalent bond generation method using the classical force field within the framework. Mechanical loading tests to activate mechanophores are also virtually conducted by deforming the volume of a simulation unit cell. The unit cell deformation leads to covalent bond elongation and subsequent bond breakage, which is captured using the bond order based force field. The outcome of the virtual loading test is used for local work analysis, which enables a quantitative study of mechanophore activation. Through the local work analysis, the onset and evolution of mechanophore activation indicating damage initiation and propagation are estimated; ultimately, the mechanophore sensitivity to external stress is evaluated. The virtual loading tests also provide accurate estimations of mechanical properties such as elastic, shear, bulk modulus, yield strain/strength, and Poisson’s ratio of the system. Experimental studies are performed in conjunction with the simulation work to validate the hybrid MD simulation framework. Less than 2% error in estimations of glass transition temperature (Tg) is observed with experimentally measured Tgs by use of differential scanning calorimetry. Virtual loading tests successfully reproduce the stress-strain curve capturing the effect of mechanophore inclusion on mechanical properties of epoxy polymer; comparable changes in Young’s modulus and yield strength are observed in experiments and simulations. Early damage signal detection, which is identified in experiments by observing increased intensity before the yield strain, is captured in simulations by showing that the critical strain representing the onset of the mechanophore activation occurs before the estimated yield strain. It is anticipated that the experimentally validated hybrid MD framework presented in this dissertation will provide a low-cost alternative to additional experiments that are required for optimizing material design parameters to improve damage sensing capability and mechanical properties.

In addition to the study of mechanochemical reaction analysis, an atomistic model of interphase in carbon fiber reinforced composites is developed. Physical entanglement between semi-crystalline carbon fiber surface and polymer matrix is captured by introducing voids in multiple graphene layers, which allow polymer matrix to intertwine with graphene layers. The hybrid MD framework is used with some modifications to estimate interphase properties that include the effect of the physical entanglement. The results are compared with existing carbon fiber surface models that assume that carbon fiber has a crystalline structure and hence are unable to capture the physical entanglement. Results indicate that the current model shows larger stress gradients across the material interphase. These large stress gradients increase the viscoplasticity and damage effects at the interphase. The results are important for improved prediction of the nonlinear response and damage evolution in composite materials.
ContributorsKoo, Bonsung (Author) / Chattopadhyay, Aditi (Thesis advisor) / Dai, Lenore (Committee member) / Jiang, Hanqing (Committee member) / Jiao, Yang (Committee member) / Rajadas, John (Committee member) / Arizona State University (Publisher)
Created2017