This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

157028-Thumbnail Image.png
Description
Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness,

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach.

In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore

and predict students’ performances. Multiple machine learning models and the model accuracy were evaluated based on the Shapley Additive Explanation.

The Cross-Validation shows the Gradient Boosting Decision Tree has the best precision 85.93% with average 82.90%. Features like Component grade, Due Date, Submission Times have higher impact than others. Baseline model received lower precision due to lack of non-linear fitting.
ContributorsTian, Wenbo (Author) / Hsiao, Ihan (Thesis advisor) / Bazzi, Rida (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2019
156621-Thumbnail Image.png
Description
Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of

Investigation of measurement invariance (MI) commonly assumes correct specification of dimensionality across multiple groups. Although research shows that violation of the dimensionality assumption can cause bias in model parameter estimation for single-group analyses, little research on this issue has been conducted for multiple-group analyses. This study explored the effects of mismatch in dimensionality between data and analysis models with multiple-group analyses at the population and sample levels. Datasets were generated using a bifactor model with different factor structures and were analyzed with bifactor and single-factor models to assess misspecification effects on assessments of MI and latent mean differences. As baseline models, the bifactor models fit data well and had minimal bias in latent mean estimation. However, the low convergence rates of fitting bifactor models to data with complex structures and small sample sizes caused concern. On the other hand, effects of fitting the misspecified single-factor models on the assessments of MI and latent means differed by the bifactor structures underlying data. For data following one general factor and one group factor affecting a small set of indicators, the effects of ignoring the group factor in analysis models on the tests of MI and latent mean differences were mild. In contrast, for data following one general factor and several group factors, oversimplifications of analysis models can lead to inaccurate conclusions regarding MI assessment and latent mean estimation.
ContributorsXu, Yuning (Author) / Green, Samuel (Thesis advisor) / Levy, Roy (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2018
154498-Thumbnail Image.png
Description
A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both

A simulation study was conducted to explore the influence of partial loading invariance and partial intercept invariance on the latent mean comparison of the second-order factor within a higher-order confirmatory factor analysis (CFA) model. Noninvariant loadings or intercepts were generated to be at one of the two levels or both levels for a second-order CFA model. The numbers and directions of differences in noninvariant loadings or intercepts were also manipulated, along with total sample size and effect size of the second-order factor mean difference. Data were analyzed using correct and incorrect specifications of noninvariant loadings and intercepts. Results summarized across the 5,000 replications in each condition included Type I error rates and powers for the chi-square difference test and the Wald test of the second-order factor mean difference, estimation bias and efficiency for this latent mean difference, and means of the standardized root mean square residual (SRMR) and the root mean square error of approximation (RMSEA).

When the model was correctly specified, no obvious estimation bias was observed; when the model was misspecified by constraining noninvariant loadings or intercepts to be equal, the latent mean difference was overestimated if the direction of the difference in loadings or intercepts of was consistent with the direction of the latent mean difference, and vice versa. Increasing the number of noninvariant loadings or intercepts resulted in larger estimation bias if these noninvariant loadings or intercepts were constrained to be equal. Power to detect the latent mean difference was influenced by estimation bias and the estimated variance of the difference in the second-order factor mean, in addition to sample size and effect size. Constraining more parameters to be equal between groups—even when unequal in the population—led to a decrease in the variance of the estimated latent mean difference, which increased power somewhat. Finally, RMSEA was very sensitive for detecting misspecification due to improper equality constraints in all conditions in the current scenario, including the nonzero latent mean difference, but SRMR did not increase as expected when noninvariant parameters were constrained.
ContributorsLiu, Yixing (Author) / Thompson, Marilyn (Thesis advisor) / Green, Samuel (Committee member) / Levy, Roy (Committee member) / Arizona State University (Publisher)
Created2016
155030-Thumbnail Image.png
Description
The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios.

This research explores the problem of the why so few of the published algorithms enter production and furthermore, fewer end up generating sustained value. The dissertation proposes a ‘Design for Deployment’ (DFD) framework to successfully build machine learning analytics so they can be deployed to generate sustained value. The framework emphasizes and elaborates the often neglected but immensely important latter steps of an analytics process: ‘Evaluation’ and ‘Deployment’. A representative evaluation framework is proposed that incorporates the temporal-shifts and dynamism of real-world scenarios. Additionally, the recommended infrastructure allows analytics projects to pivot rapidly when a particular venture does not materialize. Deployment needs and apprehensions of the industry are identified and gaps addressed through a 4-step process for sustainable deployment. Lastly, the need for analytics as a functional area (like finance and IT) is identified to maximize the return on machine-learning deployment.

The framework and process is demonstrated in semiconductor manufacturing – it is highly complex process involving hundreds of optical, electrical, chemical, mechanical, thermal, electrochemical and software processes which makes it a highly dynamic non-stationary system. Due to the 24/7 uptime requirements in manufacturing, high-reliability and fail-safe are a must. Moreover, the ever growing volumes mean that the system must be highly scalable. Lastly, due to the high cost of change, sustained value proposition is a must for any proposed changes. Hence the context is ideal to explore the issues involved. The enterprise use-cases are used to demonstrate the robustness of the framework in addressing challenges encountered in the end-to-end process of productizing machine learning analytics in dynamic read-world scenarios.
ContributorsShahapurkar, Som (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ameresh, Ashish (Committee member) / He, Jingrui (Committee member) / Tuv, Eugene (Committee member) / Arizona State University (Publisher)
Created2016
152477-Thumbnail Image.png
Description
This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation

This simulation study compared the utility of various discrepancy measures within a posterior predictive model checking (PPMC) framework for detecting different types of data-model misfit in multidimensional Bayesian network (BN) models. The investigated conditions were motivated by an applied research program utilizing an operational complex performance assessment within a digital-simulation educational context grounded in theories of cognition and learning. BN models were manipulated along two factors: latent variable dependency structure and number of latent classes. Distributions of posterior predicted p-values (PPP-values) served as the primary outcome measure and were summarized in graphical presentations, by median values across replications, and by proportions of replications in which the PPP-values were extreme. An effect size measure for PPMC was introduced as a supplemental numerical summary to the PPP-value. Consistent with previous PPMC research, all investigated fit functions tended to perform conservatively, but Standardized Generalized Dimensionality Discrepancy Measure (SGDDM), Yen's Q3, and Hierarchy Consistency Index (HCI) only mildly so. Adequate power to detect at least some types of misfit was demonstrated by SGDDM, Q3, HCI, Item Consistency Index (ICI), and to a lesser extent Deviance, while proportion correct (PC), a chi-square-type item-fit measure, Ranked Probability Score (RPS), and Good's Logarithmic Scale (GLS) were powerless across all investigated factors. Bivariate SGDDM and Q3 were found to provide powerful and detailed feedback for all investigated types of misfit.
ContributorsCrawford, Aaron (Author) / Levy, Roy (Thesis advisor) / Green, Samuel (Committee member) / Thompson, Marilyn (Committee member) / Arizona State University (Publisher)
Created2014