This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 2 of 2
Filtering by

Clear all filters

157028-Thumbnail Image.png
Description
Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness,

Due to large data resources generated by online educational applications, Educational Data Mining (EDM) has improved learning effects in different ways: Students Visualization, Recommendations for students, Students Modeling, Grouping Students, etc. A lot of programming assignments have the features like automating submissions, examining the test cases to verify the correctness, but limited studies compared different statistical techniques with latest frameworks, and interpreted models in a unified approach.

In this thesis, several data mining algorithms have been applied to analyze students’ code assignment submission data from a real classroom study. The goal of this work is to explore

and predict students’ performances. Multiple machine learning models and the model accuracy were evaluated based on the Shapley Additive Explanation.

The Cross-Validation shows the Gradient Boosting Decision Tree has the best precision 85.93% with average 82.90%. Features like Component grade, Due Date, Submission Times have higher impact than others. Baseline model received lower precision due to lack of non-linear fitting.
ContributorsTian, Wenbo (Author) / Hsiao, Ihan (Thesis advisor) / Bazzi, Rida (Committee member) / Davulcu, Hasan (Committee member) / Arizona State University (Publisher)
Created2019
155030-Thumbnail Image.png
Description
The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment

The dawn of Internet of Things (IoT) has opened the opportunity for mainstream adoption of machine learning analytics. However, most research in machine learning has focused on discovery of new algorithms or fine-tuning the performance of existing algorithms. Little exists on the process of taking an algorithm from the lab-environment into the real-world, culminating in sustained value. Real-world applications are typically characterized by dynamic non-stationary systems with requirements around feasibility, stability and maintainability. Not much has been done to establish standards around the unique analytics demands of real-world scenarios.

This research explores the problem of the why so few of the published algorithms enter production and furthermore, fewer end up generating sustained value. The dissertation proposes a ‘Design for Deployment’ (DFD) framework to successfully build machine learning analytics so they can be deployed to generate sustained value. The framework emphasizes and elaborates the often neglected but immensely important latter steps of an analytics process: ‘Evaluation’ and ‘Deployment’. A representative evaluation framework is proposed that incorporates the temporal-shifts and dynamism of real-world scenarios. Additionally, the recommended infrastructure allows analytics projects to pivot rapidly when a particular venture does not materialize. Deployment needs and apprehensions of the industry are identified and gaps addressed through a 4-step process for sustainable deployment. Lastly, the need for analytics as a functional area (like finance and IT) is identified to maximize the return on machine-learning deployment.

The framework and process is demonstrated in semiconductor manufacturing – it is highly complex process involving hundreds of optical, electrical, chemical, mechanical, thermal, electrochemical and software processes which makes it a highly dynamic non-stationary system. Due to the 24/7 uptime requirements in manufacturing, high-reliability and fail-safe are a must. Moreover, the ever growing volumes mean that the system must be highly scalable. Lastly, due to the high cost of change, sustained value proposition is a must for any proposed changes. Hence the context is ideal to explore the issues involved. The enterprise use-cases are used to demonstrate the robustness of the framework in addressing challenges encountered in the end-to-end process of productizing machine learning analytics in dynamic read-world scenarios.
ContributorsShahapurkar, Som (Author) / Liu, Huan (Thesis advisor) / Davulcu, Hasan (Committee member) / Ameresh, Ashish (Committee member) / He, Jingrui (Committee member) / Tuv, Eugene (Committee member) / Arizona State University (Publisher)
Created2016