This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 5 of 5
Filtering by

Clear all filters

150418-Thumbnail Image.png
Description
Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by

Diseases have been part of human life for generations and evolve within the population, sometimes dying out while other times becoming endemic or the cause of recurrent outbreaks. The long term influence of a disease stems from different dynamics within or between pathogen-host, that have been analyzed and studied by many researchers using mathematical models. Co-infection with different pathogens is common, yet little is known about how infection with one pathogen affects the host's immunological response to another. Moreover, no work has been found in the literature that considers the variability of the host immune health or that examines a disease at the population level and its corresponding interconnectedness with the host immune system. Knowing that the spread of the disease in the population starts at the individual level, this thesis explores how variability in immune system response within an endemic environment affects an individual's vulnerability, and how prone it is to co-infections. Immunology-based models of Malaria and Tuberculosis (TB) are constructed by extending and modifying existing mathematical models in the literature. The two are then combined to give a single nine-variable model of co-infection with Malaria and TB. Because these models are difficult to gain any insight analytically due to the large number of parameters, a phenomenological model of co-infection is proposed with subsystems corresponding to the individual immunology-based model of a single infection. Within this phenomenological model, the variability of the host immune health is also incorporated through three different pathogen response curves using nonlinear bounded Michaelis-Menten functions that describe the level or state of immune system (healthy, moderate and severely compromised). The immunology-based models of Malaria and TB give numerical results that agree with the biological observations. The Malaria--TB co-infection model gives reasonable results and these suggest that the order in which the two diseases are introduced have an impact on the behavior of both. The subsystems of the phenomenological models that correspond to a single infection (either of Malaria or TB) mimic much of the observed behavior of the immunology-based counterpart and can demonstrate different behavior depending on the chosen pathogen response curve. In addition, varying some of the parameters and initial conditions in the phenomenological model yields a range of topologically different mathematical behaviors, which suggests that this behavior may be able to be observed in the immunology-based models as well. The phenomenological models clearly replicate the qualitative behavior of primary and secondary infection as well as co-infection. The mathematical solutions of the models correspond to the fundamental states described by immunologists: virgin state, immune state and tolerance state. The phenomenological model of co-infection also demonstrates a range of parameter values and initial conditions in which the introduction of a second disease causes both diseases to grow without bound even though those same parameters and initial conditions did not yield unbounded growth in the corresponding subsystems. This results applies to all three states of the host immune system. In terms of the immunology-based system, this would suggest the following: there may be parameter values and initial conditions in which a person can clear Malaria or TB (separately) from their system but in which the presence of both can result in the person dying of one of the diseases. Finally, this thesis studies links between epidemiology (population level) and immunology in an effort to assess the impact of pathogen's spread within the population on the immune response of individuals. Models of Malaria and TB are proposed that incorporate the immune system of the host into a mathematical model of an epidemic at the population level.
ContributorsSoho, Edmé L (Author) / Wirkus, Stephen (Thesis advisor) / Castillo-Chavez, Carlos (Thesis advisor) / Chowell-Puente, Gerardo (Committee member) / Arizona State University (Publisher)
Created2011
Description
DNA nanotechnology has been a rapidly growing research field in the recent decades, and there have been extensive efforts to construct various types of highly programmable and robust DNA nanostructures. Due to the advantage that DNA nanostructure can be used to organize biochemical molecules with precisely controlled spatial resolution, herein

DNA nanotechnology has been a rapidly growing research field in the recent decades, and there have been extensive efforts to construct various types of highly programmable and robust DNA nanostructures. Due to the advantage that DNA nanostructure can be used to organize biochemical molecules with precisely controlled spatial resolution, herein we used DNA nanostructure as a scaffold for biological applications. Targeted cell-cell interaction was reconstituted through a DNA scaffolded multivalent bispecific aptamer, which may lead to promising potentials in tumor therapeutics. In addition a synthetic vaccine was constructed using DNA nanostructure as a platform to assemble both model antigen and immunoadjuvant together, and strong antibody response was demonstrated in vivo, highlighting the potential of DNA nanostructures to serve as a new platform for vaccine construction, and therefore a DNA scaffolded hapten vaccine is further constructed and tested for its antibody response. Taken together, my research demonstrated the potential of DNA nanostructure to serve as a general platform for immunological applications.
ContributorsLiu, Xiaowei (Author) / Liu, Yan (Thesis advisor) / Chang, Yung (Thesis advisor) / Yan, Hao (Committee member) / Allen, James (Committee member) / Zhang, Peiming (Committee member) / Arizona State University (Publisher)
Created2012
190721-Thumbnail Image.png
Description
Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but

Originally conceived as a way to scaffold molecules of interest into three-dimensional (3D) crystalline lattices for X ray crystallography, the field of deoxyribonucleic acid (DNA) nanotechnology has dramatically evolved since its inception. The unique properties of DNA nanostructures have promoted their use not only for X ray crystallography, but for a suite of biomedical applications as well. The work presented in this dissertation focuses on both of these exciting applications in the field: 1) Nucleic acid nanostructures as multifunctional drug and vaccine delivery platforms, and 2) 3D DNA crystals for structure elucidation of scaffolded guest molecules.Chapter 1 illustrates how a wide variety of DNA nanostructures have been developed for the delivery of drugs and vaccine components. However, their applications are limited under physiological conditions due to their lack of stability in low salt environments, susceptibility to enzymatic degradation, and tendency for endosomal entrapment. To address these issues, Chapter 2 describes a PEGylated peptide coating molecule was designed to electrostatically adhere to and protect DNA origami nanostructures and to facilitate their cytosolic delivery by peptide-mediated endosomal escape. The development of this molecule will aid in the use of nucleic acid nanostructures for biomedical purposes, such as the delivery of messenger ribonucleic acid (mRNA) vaccine constructs. To this end, Chapter 3 discusses the fabrication of a structured mRNA nanoparticle for more cost-efficient mRNA vaccine manufacture and proposes a multi-epitope mRNA nanostructure vaccine design for targeting human papillomavirus (HPV) type 16-induced head and neck cancers. DNA nanotechnology was originally envisioned to serve as three-dimensional scaffolds capable of positioning proteins in a rigid array for their structure elucidation by X ray crystallography. Accordingly, Chapter 4 explores design parameters, such as sequence and Holliday junction isomeric forms, for efficient crystallization of 3D DNA lattices. Furthermore, previously published DNA crystal motifs are used to site-specifically position and structurally evaluate minor groove binding molecules with defined occupancies. The results of this study provide significant advancement towards the ultimate goal of the field.
ContributorsHenry, Skylar J.W. (Author) / Stephanopoulos, Nicholas (Thesis advisor) / Anderson, Karen (Thesis advisor) / Blattman, Joseph (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2023
193456-Thumbnail Image.png
Description
Peptide-based vaccines represent a promising strategy to develop personalized treatments for cancer immunotherapy. Despite their specificity and low cost of production, these vaccines have had minimal success in clinical studies due to their lack of immunogenicity, creating a need for more effective vaccine designs. Adjuvants can be incorporated to enhance

Peptide-based vaccines represent a promising strategy to develop personalized treatments for cancer immunotherapy. Despite their specificity and low cost of production, these vaccines have had minimal success in clinical studies due to their lack of immunogenicity, creating a need for more effective vaccine designs. Adjuvants can be incorporated to enhance their immunogenicity by promoting dendritic cell activation and antigen cross-presentation. Due to their favorable size and ability to incorporate peptides and adjuvants, nanoparticles represent an advantageous platform for designing peptide vaccines. One prime example is RNA origami (RNA-OG) nanostructures, which are nucleic acid nanostructures programmed to assemble into uniform shapes and sizes. These stable nanostructures can rationally incorporate small molecules giving them a wide array of functions. Furthermore, RNA-OG itself can function as an adjuvant to stimulate innate immune cells. In the following study, self-adjuvanted RNA-OG was employed as a vaccine assembly platform, incorporating tumor peptides onto the nanostructure to design RNA-OG-peptide nanovaccines for cancer immunotherapy. RNA-OG-peptide was found to induce dendritic cell activation and antigen cross-presentation, which mobilized tumor-specific cytotoxic T cells to elicit protective anti-tumor immunity in tumor-bearing mice. These findings demonstrate the therapeutic potential of RNA-OG as a stable, carrier-free nanovaccine platform. In an attempt to further enhance the efficacy by optimizing the amount of peptides assembled, RNA-OG was complexed with polylysine-linked peptides, a simple strategy that allowed peptide amounts to be varied. Interestingly, increasing the peptide load led to decreased vaccine efficacy, which was correlated with an ineffective CD8+ T cell response. On the other hand, the vaccine efficacy was improved by decreasing the amount of peptide loaded onto RNA-OG, which may have attributed to greater complex stability compared to the high peptide load. These results highlight a simple strategy that can be used to optimize vaccine efficacy by altering the load of assembled peptides. These studies advance our understanding of RNA-OG as a peptide vaccine platform and provide various strategies to improve the design of peptide vaccines for translation into cancer immunotherapy.
ContributorsYip, Theresa (Author) / Chang, Yung (Thesis advisor) / Borges Florsheim, Esther (Committee member) / Lake, Douglas (Committee member) / Yan, Hao (Committee member) / Arizona State University (Publisher)
Created2024
155949-Thumbnail Image.png
Description
There are many biological questions that require single-cell analysis of gene sequences, including analysis of clonally distributed dimeric immunoreceptors on lymphocytes (T cells and B cells) and/or the accumulation of driver/accessory mutations in polyclonal tumors. Lysis of bulk cell populations results in mixing of gene sequences, making it impossible to

There are many biological questions that require single-cell analysis of gene sequences, including analysis of clonally distributed dimeric immunoreceptors on lymphocytes (T cells and B cells) and/or the accumulation of driver/accessory mutations in polyclonal tumors. Lysis of bulk cell populations results in mixing of gene sequences, making it impossible to know which pairs of gene sequences originated from any particular cell and obfuscating analysis of rare sequences within large populations. Although current single-cell sorting technologies can be used to address some of these questions, such approaches are expensive, require specialized equipment, and lack the necessary high-throughput capacity for comprehensive analysis. Water-in-oil emulsion approaches for single cell sorting have been developed but droplet-based single-cell lysis and analysis have proven inefficient and yield high rates of false pairings. Ideally, molecular approaches for linking gene sequences from individual cells could be coupled with next-generation high-throughput sequencing to overcome these obstacles, but conventional approaches for linking gene sequences, such as by transfection with bridging oligonucleotides, result in activation of cellular nucleases that destroy the template, precluding this strategy. Recent advances in the synthesis and fabrication of modular deoxyribonucleic acid (DNA) origami nanostructures have resulted in new possibilities for addressing many current and long-standing scientific and technical challenges in biology and medicine. One exciting application of DNA nanotechnology is the intracellular capture, barcode linkage, and subsequent sequence analysis of multiple messenger RNA (mRNA) targets from individual cells within heterogeneous cell populations. DNA nanostructures can be transfected into individual cells to capture and protect mRNA for specific expressed genes, and incorporation of origami-specific bowtie-barcodes into the origami nanostructure facilitates pairing and analysis of mRNA from individual cells by high-throughput next-generation sequencing. This approach is highly modular and can be adapted to virtually any two (and possibly more) gene target sequences, and therefore has a wide range of potential applications for analysis of diverse cell populations such as understanding the relationship between different immune cell populations, development of novel immunotherapeutic antibodies, or improving the diagnosis or treatment for a wide variety of cancers.
ContributorsSchoettle, Louis (Author) / Blattman, Joseph N (Thesis advisor) / Yan, Hao (Committee member) / Chang, Yung (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2017