This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 16
Filtering by

Clear all filters

151901-Thumbnail Image.png
Description
ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups

ABSTRACT 1. Aposematic signals advertise prey distastefulness or metabolic unprofitability to potential predators and have evolved independently in many prey groups over the course of evolutionary history as a means of protection from predation. Most aposematic signals investigated to date exhibit highly chromatic patterning; however, relatives in these toxic groups with patterns of very low chroma have been largely overlooked. 2. We propose that bright displays with low chroma arose in toxic prey species because they were more effective at deterring predation than were their chromatic counterparts, especially when viewed in relatively low light environments such as forest understories. 3. We analyzed the reflectance and radiance of color patches on the wings of 90 tropical butterfly species that belong to groups with documented toxicity that vary in their habitat preferences to test this prediction: Warning signal chroma and perceived chromaticity are expected to be higher and brightness lower in species that fly in open environments when compared to those that fly in forested environments. 4. Analyses of the reflectance and radiance of warning color patches and predator visual modeling support this prediction. Moreover, phylogenetic tests, which correct for statistical non-independence due to phylogenetic relatedness of test species, also support the hypothesis of an evolutionary correlation between perceived chromaticity of aposematic signals and the flight habits of the butterflies that exhibit these signals.
ContributorsDouglas, Jonathan Marion (Author) / Rutowski, Ronald L (Thesis advisor) / Gadau, Juergen (Committee member) / McGraw, Kevin J. (Committee member) / Arizona State University (Publisher)
Created2013
152635-Thumbnail Image.png
Description
Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes

Urbanization provides an excellent opportunity to examine the effects of human-induced rapid environmental change (HIREC) on natural ecosystems. Certain species can dominate in urban habitats at the expense of biodiversity. Phenotypic plasticity may be the mechanism by which these 'urban exploiters' flourish in urban areas. Color displays and condition-dependent phenotypes are known to be highly plastic. However, conspicuous color displays are perplexing in that they can be costly to produce and may increase detection by enemies. The Western black widow spider () is a superabundant pest species that forms dense aggregations throughout metropolitan Phoenix, Arizona, USA. Adult female display a red hourglass on their abdomen, which is speculated to function as a conspicuous warning signal to enemies. Here, I performed field studies to identify how widow morphology and hourglass color differ between urban and desert subpopulations. I also conducted laboratory experiments to examine the dietary sensitivity of hourglass coloration and to identify its functional role in the contexts of agonism, mating, and predator defense. My field data reveal significant spatial variation across urban and desert subpopulations in ecology and color. Furthermore, hourglass coloration was significantly influenced by environmental factors unique to urban habitats. Desert spiders were found to be smaller and less colorful than urban spiders. Throughout, I observed a positive correlation between body condition and hourglass size. Laboratory diet manipulations empirically confirm the condition-dependence of hourglass size. Additionally, widows with extreme body conditions exhibited condition-dependent coloration. However, hourglass obstruction and enlargement did not produce any effects on the outcome of agonistic encounters, male courtship, or predator deterrence. This work offers important insights into the effects of urbanization on the ecology and coloration of a superabundant pest species. While the function of the hourglass remains undetermined, my findings characterize the black widow's hourglass as extremely plastic. Plastic responses to novel environmental conditions can modify the targets of natural selection and subsequently influence evolutionary outcomes. Therefore, assuming a heritable component to this plasticity, the response of hourglass plasticity to the abrupt environmental changes in urban habitats may result in the rapid evolution of this phenotype.
ContributorsGburek, Theresa (Author) / Johnson, James C. (Thesis advisor) / McGraw, Kevin J. (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2014
150161-Thumbnail Image.png
Description
One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery

One hypothesis for the small size of insects relative to vertebrates, and the existence of giant fossil insects, is that atmospheric oxygen levels have constrained body sizes because oxygen delivery would be unable to match the needs of metabolically active tissues in larger insects. This study tested whether oxygen delivery becomes more challenging for larger insects by measuring the oxygen-sensitivity of flight metabolic rates and behavior during hovering for 11 different species of dragonflies that range in mass by an order of magnitude. Animals were flown in 7 different oxygen concentrations ranging from 30% to 2.5% to assess the sensitivity of their behavior and flight metabolic rates to oxygen. I also assessed the oxygen-sensitivity of flight in low-density air (nitrogen replaced with helium), to increase the metabolic demands of hovering flight. Lowered atmosphere densities did induce higher metabolic rates. Flight behaviors but not flight metabolic rates were highly oxygen-sensitive. A significant interaction between oxygen and mass was found for total flight time, with larger dragonflies varying flight time more in response to atmospheric oxygen. This study provides some support for the hypothesis that larger insects are more challenged in oxygen delivery, as predicted by the oxygen limitation hypothesis for insect gigantism in the Paleozoic.
ContributorsHenry, Joanna Randyl (Author) / Harrison, Jon F. (Thesis advisor) / Kaiser, Alexander (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2011
150734-Thumbnail Image.png
Description
Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from

Differences between males and females can evolve through a variety of mechanisms, including sexual and ecological selection. Because coloration is evolutionarily labile, sexually dichromatic species are good models for understanding the evolution of sex differences. While many jumping spiders exhibit diverse and brilliant coloration, they have been notably absent from such studies. In the genus Habronattus, females are drab and cryptic while males are brilliantly colored, displaying some of these colors to females during elaborate courtship dances. Here I test multiple hypotheses for the control and function of male color. In the field, I found that Habronattus males indiscriminately court any female they encounter (including other species), so I first examined the role that colors play in species recognition. I manipulated male colors in H. pyrrithrix and found that while they are not required for species recognition, the presence of red facial coloration improves courtship success, but only if males are courting in the sun. Because light environment affects transmission of color signals, the multi-colored displays of males may facilitate communication in variable and unpredictable environments. Because these colors can be costly to produce and maintain, they also have the potential to signal reliable information about male quality to potential female mates. I found that both red facial and green leg coloration is condition dependent in H. pyrrithrix and thus has the potential to signal quality. Yet, surprisingly, this variation in male color does not appear to be important to females. Males of many Habronattus species also exhibit conspicuous markings on the dorsal surface of their abdomens that are not present in females and are oriented away from females during courtship. In the field, I found that these markings are paired with increased leg-waving behavior in a way that resembles the pattern and behavior of wasps; this may provide protection by exploiting the aversions of predators. My data also suggest that different activity levels between the sexes have placed different selection pressures on their dorsal color patterns. Overall, these findings challenge some of the traditional ways that we think about color signaling and provide novel insights into the evolution of animal coloration.
ContributorsTaylor, Lisa Anne (Author) / McGraw, Kevin J. (Thesis advisor) / Clark, David L. (Committee member) / Johnson, James C. (Committee member) / Alcock, John (Committee member) / Rutowski, Ronald L (Committee member) / Arizona State University (Publisher)
Created2012
150967-Thumbnail Image.png
Description
Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the

Colorful ornaments in animals often serve as sexually selected signals of quality. While pigment-based colors are well-studied in these regards, structural colors that result from the interaction of light with photonic nanostructures are comparatively understudied in terms of their consequences in social contexts, their costs of production, and even the best way to measure them. Iridescent colors are some of the most brilliant and conspicuous colors in nature, and I studied the measurement, condition-dependence, and signaling role of iridescence in Anna's hummingbirds (Calypte anna). While most animal colors are easily quantified using well-established spectrophotometric techniques, the unique characteristics of iridescent colors present challenges to measurement and opportunities to quantify novel color metrics. I designed and tested an apparatus for careful control and measurement of viewing geometry and highly repeatable measurements. These measurements could be used to accurately characterize individual variation in iridescent Anna's hummingbirds to examine their condition-dependence and signaling role. Next, I examined the literature published to date for evidence of condition-dependence of structural colors in birds. Using meta-analyses, I found that structural colors of all three types - white, ultra-violet/blue, and iridescence - are significantly condition-dependent, meaning that they can convey information about quality to conspecifics. I then investigated whether iridescent colors were condition-dependent in Anna's hummingbirds both in a field correlational study and in an experimental study. Throughout the year, I found that iridescent feathers in both male and female Anna's hummingbirds become less brilliant as they age. Color was not correlated with body condition in any age/sex group. However, iridescent coloration in male Anna's hummingbirds was significantly affected by experimental protein in the diet during feather growth, indicating that iridescent color may signal diet quality. Finally, I examined how iridescent colors were used to mediate social competitions in male and female Anna's hummingbirds. Surprisingly, males that were less colorful won significantly more contests than more colorful males, and colorful males received more aggression. Less colorful males may be attempting to drive away colorful neighbors that may be preferred mates. Female iridescent ornament size and color was highly variable, but did not influence contest outcomes or aggression.
ContributorsMeadows, Melissa (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald L (Committee member) / Sabo, John L (Committee member) / Alcock, John (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2012
153959-Thumbnail Image.png
Description
Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very

Sexual and social signals have long been thought to play an important role in speciation and diversity; hence, investigations of intraspecific communication may lead to important insights regarding key processes of evolution. Though we have learned much about the control, function, and evolution of animal communication by studying several very common signal types, investigating rare classes of signals may provide new information about how and why animals communicate. My dissertation research focused on rapid physiological color change, a rare signal-type used by relatively few taxa. To answer longstanding questions about this rare class of signals, I employed novel methods to measure rapid color change signals of male veiled chameleons Chamaeleo calyptratus in real-time as seen by the intended conspecific receivers, as well as the associated behaviors of signalers and receivers. In the context of agonistic male-male interactions, I found that the brightness achieved by individual males and the speed of color change were the best predictors of aggression and fighting ability. Conversely, I found that rapid skin darkening serves as a signal of submission for male chameleons, reducing aggression from winners when displayed by losers. Additionally, my research revealed that the timing of maximum skin brightness and speed of brightening were the best predictors of maximum bite force and circulating testosterone levels, respectively. Together, these results indicated that different aspects of color change can communicate information about contest strategy, physiology, and performance ability. Lastly, when I experimentally manipulated the external appearance of chameleons, I found that "dishonestly" signaling individuals (i.e. those whose behavior did not match their manipulated color) received higher aggression from unpainted opponents. The increased aggression received by dishonest signalers suggests that social costs play an important role in maintaining the honesty of rapid color change signals in veiled chameleons. Though the color change abilities of chameleons have interested humans since the time of Aristotle, little was previously known about the signal content of such changes. Documenting the behavioral contexts and information content of these signals has provided an important first step in understanding the current function, underlying control mechanisms, and evolutionary origins of this rare signal type.
ContributorsLigon, Russell (Author) / McGraw, Kevin J. (Committee member) / DeNardo, Dale F (Committee member) / Karsten, Kristopher B (Committee member) / Rutowski, Ronald L (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2015
156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
ContributorsKurgan, Gavin (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
154807-Thumbnail Image.png
Description
Although mimetic animal coloration has been studied since Darwin's time, many questions on the efficacy, evolution, and function of mimicry remain unanswered. Müller (1879) hypothesized that unpalatable individuals converge on the same conspicuous coloration to reduce predation. However, there are many cases where closely related, unpalatable species have diverged from

Although mimetic animal coloration has been studied since Darwin's time, many questions on the efficacy, evolution, and function of mimicry remain unanswered. Müller (1879) hypothesized that unpalatable individuals converge on the same conspicuous coloration to reduce predation. However, there are many cases where closely related, unpalatable species have diverged from a shared conspicuous pattern. What selection pressures have led to divergence in warning colors? Environmental factors such as ambient light have been hypothesized to affect signal transmission and efficacy in animals. Using two mimetic pairs of Heliconius butterflies, Postman and Blue-white, I tested the hypothesis that animals with divergent mimetic colors segregate by light environment to maximize conspicuousness of the aposematic warning signal under their particular environmental conditions. Each mimetic pair was found in a light environment that differed in brightness and spectral composition, which affected visual conspicuousness differently depending on mimetic color patch. I then used plasticine models in the field to test the hypothesis that mimics had higher survival in the habitat where they occurred. Although predation rates differed between the two habitats, there was no interactive effect of species by habitat type. Through choice experiments, I demonstrated that mimetic individuals preferred to spend time in the light environment where they were most often found and that their absolute visual sensitivity corresponds to the ambient lighting of their respective environment. Eye morphology was then studied to determine if differences in total corneal surface area and/or facet diameters explained the differences in visual sensitivities, but the differences found in Heliconius eye morphology did not match predictions based upon visual sensitivity. To further understand how eye morphology varies with light environments, I studied many tropical butterflies from open and closed habitats to reveal that forest understory butterflies have larger facets compared to butterflies occupying open habitats. Lastly, I tested avian perception of mimicry in a putative Heliconius mimetic assemblage and show that the perceived mimetic resemblance depends upon visual system. This dissertation reveals the importance of light environments on mimicry, coloration, behavior and visual systems of tropical butterflies.
ContributorsSeymoure, Brett M (Author) / Rutowski, Ronald L (Thesis advisor) / McGraw, Kevin J. (Thesis advisor) / McMillan, W. Owen (Committee member) / Pratt, Stephen (Committee member) / Gadau, Jürgen (Committee member) / Arizona State University (Publisher)
Created2016
154836-Thumbnail Image.png
Description
Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is

Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is well-known for its substrate promiscuity. It has the ability to efflux a broad spectrum of substrates alongside compounds such as dyes, detergent, bile salts and metabolites. Newly identified AcrB residues were shown to be functionally relevant in the drug binding and translocation pathway using a positive genetic selection strategy. These residues—Y49, V127, D153, G288, F453, and L486—were identified as the sites of suppressors of an alteration, F610A, that confers a drug hypersensitivity phenotype. Using site-directed mutagenesis (SDM) along with the real-time efflux and the classical minimum inhibitory concentration (MIC) assays, I was able to characterize the mechanism of suppression.

Three approaches were used for the characterization of these suppressors. The first approach focused on side chain specificity. The results showed that certain suppressor sites prefer a particular side chain property, such as size, to overcome the F610A defect. The second approach focused on the effects of efflux pump inhibitors. The results showed that though the suppressor residues were able to overcome the intrinsic defect of F610A, they were unable to overcome the extrinsic defect caused by the efflux pump inhibitors. This showed that the mechanism by which F610A imposes its effect on AcrB function is different than that of the efflux pump inhibitors. The final approach was to determine whether suppressors mapping in the periplasmic and trans-membrane domains act by the same or different mechanisms. The results showed both overlapping and distinct mechanisms of suppression.

To conclude, these approaches have provided a deeper understanding of the mechanisms by which novel suppressor residues of AcrB overcome the functional defect of the drug binding domain alteration, F610A.
ContributorsBlake, Mellecha (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016