This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152822-Thumbnail Image.png
Description
This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa.

This study aims to unearth monological and monocultural discourses buried under the power of the dominant biomedical model governing the HIV/AIDS debate. The study responds to an apparent consensus, rooted in Western biomedicine and its "standardizations of knowledge," in the production of the current HIV/AIDS discourse, especially in Sub-Saharan Africa. As a result, biomedicine has become the dominant actor (in) writing and rewriting discourse for the masses while marginalizing other forms of medical knowledge. Specifically, in its development, the Western biomedical model has arguably isolated the disease from its human host and the social experiences that facilitate the disease's transmission, placing it in the realm of laboratories and scientific experts and giving full ownership to Western medical discourse. Coupled with Western assumptions about African culture that reproduce a one-sided discourse informing the social construction of HIV/AIDS in Africa, this Western monopoly thus constrained the extent and efficacy of international prevention efforts. In this context, the goal for this study is not to demonize the West and biomedicine in general. Rather, this study seeks an alternative and less monolithic understanding currently absent in scientific discourses of HIV/AIDS that frequently elevates Western biomedicine over indigenous medicine; the Western expert over the local. The study takes into account the local voices of Sub-Saharan Africa and how the system has affected them, this study utilizes a Foucauldian approach to analyze discourse as a way to explore how certain ways of knowledge are formed in relation to power. This study also examines how certain knowlege is maintaned and reinforced within specific discourses.
ContributorsAbdalla, Mohamed (Author) / Jacobs, Bertram (Thesis advisor) / Robert, Jason (Committee member) / Klimek, Barbara (Committee member) / Arizona State University (Publisher)
Created2014
156871-Thumbnail Image.png
Description
Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of

Understanding the diversity, evolutionary relationships, and geographic distribution of species is foundational knowledge in biology. However, this knowledge is lacking for many diverse lineages of the tree of life. This is the case for the desert stink beetles in the tribe Amphidorini LeConte, 1862 (Coleoptera: Tenebrionidae) – a lineage of arid-adapted flightless beetles found throughout western North America. Four interconnected studies that jointly increase our knowledge of this group are presented. First, the darkling beetle fauna of the Algodones sand dunes in southern California is examined as a case study to explore the scientific practice of checklist creation. An updated list of the species known from this region is presented, with a critical focus on material now made available through digitization and global aggregation. This part concludes with recommendations for future biodiversity checklist authors. Second, the psammophilic genus Trogloderus LeConte, 1879 is revised. Six new species are described, and the first, multi-gene phylogeny for the genus is inferred. In addition, historical biogeographic reconstructions along with novel hypotheses of speciation patterns within the Intermountain Region are given. In particular, the Kaibab Plateau and Kaiparowitz Formation are found to have promoted speciation on the Colorado Plateau. The Owens Valley and prehistoric Bouse Embayment are similarly hypothesized to drive species diversification in southern California. Third, a novel phylogenomic analysis for the tribe Amphidorini is presented, based on 29 de novo partial transcriptomes. Three putative ortholog sets were discovered and analyzed to infer the relationships between species groups and genera. The existing classification of the tribe is found to be highly inadequate, though the earliest-diverging relationships within the tribe are still in question. Finally, the new phylogenetic framework is used to provide a genus-level revision for the Amphidorini, which previously contained six valid genera and 253 valid species. This updated classification includes more than 100 taxonomic changes and results in the revised tribe consisting of 16 genera, with three being described as new to science.
ContributorsJohnston, Murray Andrew (Author) / Franz, Nico M (Thesis advisor) / Cartwright, Reed (Committee member) / Taylor, Jesse (Committee member) / Pigg, Kathleen (Committee member) / Arizona State University (Publisher)
Created2018
154511-Thumbnail Image.png
Description
Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to

Isolation-by-distance is a specific type of spatial genetic structure that arises when parent-offspring dispersal is limited. Many natural populations exhibit localized dispersal, and as a result, individuals that are geographically near each other will tend to have greater genetic similarity than individuals that are further apart. It is important to identify isolation-by-distance because it can impact the statistical analysis of population samples and it can help us better understand evolutionary dynamics. For this dissertation I investigated several aspects of isolation-by-distance. First, I looked at how the shape of the dispersal distribution affects the observed pattern of isolation-by-distance. If, as theory predicts, the shape of the distribution has little effect, then it would be more practical to model isolation-by-distance using a simple dispersal distribution rather than replicating the complexities of more realistic distributions. Therefore, I developed an efficient algorithm to simulate dispersal based on a simple triangular distribution, and using a simulation, I confirmed that the pattern of isolation-by-distance was similar to other more realistic distributions. Second, I developed a Bayesian method to quantify isolation-by-distance using genetic data by estimating Wright’s neighborhood size parameter. I analyzed the performance of this method using simulated data and a microsatellite data set from two populations of Maritime pine, and I found that the neighborhood size estimates had good coverage and low error. Finally, one of the major consequences of isolation-by-distance is an increase in inbreeding. Plants are often particularly susceptible to inbreeding, and as a result, they have evolved many inbreeding avoidance mechanisms. Using a simulation, I determined which mechanisms are more successful at preventing inbreeding associated with isolation-by-distance.
ContributorsFurstenau, Tara N (Author) / Cartwright, Reed A (Thesis advisor) / Rosenberg, Michael S. (Committee member) / Taylor, Jesse (Committee member) / Wilson-Sayres, Melissa (Committee member) / Arizona State University (Publisher)
Created2015
154808-Thumbnail Image.png
Description
The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous

The complex life cycle and widespread range of infection of Plasmodium parasites, the causal agent of malaria in humans, makes them the perfect organism for the study of various evolutionary mechanisms. In particular, multigene families are considered one of the main sources for genome adaptability and innovation. Within Plasmodium, numerous species- and clade-specific multigene families have major functions in the development and maintenance of infection. Nonetheless, while the evolutionary mechanisms predominant on many species- and clade-specific multigene families have been previously studied, there are far less studies dedicated to analyzing genus common multigene families (GCMFs). I studied the patterns of natural selection and recombination in 90 GCMFs with diverse numbers of gene gain/loss events. I found that the majority of GCMFs are formed by duplications events that predate speciation of mammal Plasmodium species, with many paralogs being neutrally maintained thereafter. In general, multigene families involved in immune evasion and host cell invasion commonly showed signs of positive selection and species-specific gain/loss events; particularly, on Plasmodium species is the simian and rodent clades. A particular multigene family: the merozoite surface protein-7 (msp7) family, is found in all Plasmodium species and has functions related to the erythrocyte invasion. Within Plasmodium vivax, differences in the number of paralogs in this multigene family has been previously explained, at least in part, as potential adaptations to the human host. To investigate this I studied msp7 orthologs in closely related non-human primate parasites where homology was evident. I also estimated paralogs’ evolutionary history and genetic polymorphism. The emerging patterns where compared with those of Plasmodium falciparum. I found that the evolution of the msp7 multigene family is consistent with a Birth-and-Death model where duplications, pseudogenization and gene lost events are common. In order to study additional aspects in the evolution of Plasmodium, I evaluated the trends of long term and short term evolution and the putative effects of vertebrate- host’s immune pressure of gametocytes across various Plasmodium species. Gametocytes, represent the only sexual stage within the Plasmodium life cycle, and are also the transition stages from the vertebrate to the mosquito vector. I found that, while male and female gametocytes showed different levels of immunogenicity, signs of positive selection were not entirely related to the location and presence of immune epitope regions. Overall, these studies further highlight the complex evolutionary patterns observed in Plasmodium.
ContributorsCastillo Siri, Andreina I (Author) / Rosenberg, Michael (Thesis advisor) / Escalante, Ananias (Committee member) / Taylor, Jesse (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
189225-Thumbnail Image.png
Description
Biogeography places the geographical distribution of biodiversity in an evolutionary context. Ants (Hymenoptera: Formicidae), being a group of ubiquitous, ecologically dominant, and diverse insects, are useful model systems to understand the evolutionary origins and mechanisms of biogeographical patterns across spatial scales. On a global scale, ants have been used to

Biogeography places the geographical distribution of biodiversity in an evolutionary context. Ants (Hymenoptera: Formicidae), being a group of ubiquitous, ecologically dominant, and diverse insects, are useful model systems to understand the evolutionary origins and mechanisms of biogeographical patterns across spatial scales. On a global scale, ants have been used to test hypotheses on the origin and maintenance of the remarkably consistent latitudinal diversity gradient where biodiversity peaks in the equatorial tropics and decreases towards the poles. Additionally, ants have been used to posit and test theories of island biogeography such as the mechanisms of the species-area relationship, being the increase of biodiversity with cumulative land area. However, there are still unanswered questions about ant biogeography such as how specialized life histories contribute to their global biogeographical patterns. Furthermore, there remain island systems in the world’s biodiversity hotspots that harbor much less ant species than predicted by the species-area relationship, which potentially suggests a place ripe for discovery. In this dissertation, I use natural history, taxonomic, geographic, and phylogenetic data to study ant biodiversity and biogeography across spatial scales. First, I study the global biodiversity and biogeography of a specialized set of symbiotic interactions between ant species, here referred to as myrmecosymbioses, with an emphasis on social parasitism where one species exploits the parental care behavior and social colony environment of another species. In addition to characterizing a new myrmecosymbiosis, I use a global biogeographic and phylogenetic dataset to show that ant social parasitism is distributed along an inverse latitudinal diversity gradient where species richness and independent evolutionary origins of social parasitism peak within the northern hemisphere where the least free-living ant diversity exists. Second, I study the unexplored ant fauna of the Vanuatuan archipelago in the South Pacific. Using approximately 10,000 Vanuatuan ant specimens coupled with phylogenomics, I fill in a historical knowledge gap of South Pacific ant biogeography and demonstrate that the Vanuatuan ant fauna is a novel biodiversity hotspot. With these studies, I provide insights into how specialized life histories and unique island biotas shape the global distribution of biodiversity in different ways, especially in the ants.
ContributorsGray, Kyle William (Author) / Rabeling, Christian (Thesis advisor) / Martins, Emilia (Committee member) / Taylor, Jesse (Committee member) / Pratt, Stephen (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2023
158695-Thumbnail Image.png
Description
Prior to the first successful allogeneic organ transplantation in 1954, virtually every attempt at transplanting organs in humans had resulted in death, and understanding the role of the immune mechanisms that induced graft rejection served as one of the biggest obstacles impeding its success. While the eventual achievement of organ

Prior to the first successful allogeneic organ transplantation in 1954, virtually every attempt at transplanting organs in humans had resulted in death, and understanding the role of the immune mechanisms that induced graft rejection served as one of the biggest obstacles impeding its success. While the eventual achievement of organ transplantation is touted as one of the most important success stories in modern medicine, there still remains a physiological need for immunosuppression in order to make organ transplantation work. One such solution in the field of experimental regenerative medicine is interspecies blastocyst complementation, a means of growing patient-specific human organs within animals. To address the progression of immune-related constraints on organ transplantation, the first part of this thesis contains a historical analysis tracing early transplant motivations and the events that led to the discoveries broadly related to tolerance, rejection, and compatibility. Despite the advancement of those concepts over time, this early history shows that immunosuppression was one of the earliest limiting barriers to successful organ transplantation, and remains one of the most significant technical challenges. Then, the second part of this thesis determines the extent at which interspecies blastocyst complementation could satisfy modern technical limitations of organ transplantation. Demonstrated in 2010, this process involves using human progenitor cells derived from induced pluripotent stem cells (iPSCs) to manipulate an animal blastocyst genetically modified to lack one or more functional genes responsible for the development of the intended organ. Instead of directly modulating the immune response, the use of iPSCs with interspecies blastocyst complementation could theoretically eliminate the need for immunosuppression entirely based on the establishment of tolerance and elimination of rejection, while also satisfying the logistical demands imposed by the national organ shortage. Although the technology will require some further refinement, it remains a promising solution to eliminate the requirement of immunosuppression after an organ transplant.
ContributorsDarby, Alexis Renee (Author) / Maienschein, Jane (Thesis advisor) / Robert, Jason (Thesis advisor) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2020
158849-Thumbnail Image.png
Description
Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The

Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The problem of accurate genotyping is exacerbated when
there is not a reference genome or other auxiliary information available.
I explore several methods for sensitively detecting mutations in non-model or-
ganisms using an example Eucalyptus melliodora individual. I use the structure of
the tree to find bounds on its somatic mutation rate and evaluate several algorithms
for variant calling. I find that conventional methods are suitable if the genome of a
close relative can be adapted to the study organism. However, with structured data,
a likelihood framework that is aware of this structure is more accurate. I use the
techniques developed here to evaluate a reference-free variant calling algorithm.
I also use this data to evaluate a k-mer based base quality score recalibrator
(KBBQ), a tool I developed to recalibrate base quality scores attached to sequencing
data. Base quality scores can help detect errors in sequencing reads, but are often
inaccurate. The most popular method for correcting this issue requires a known
set of variant sites, which is unavailable in most cases. I simulate data and show
that errors in this set of variant sites can cause calibration errors. I then show that
KBBQ accurately recalibrates base quality scores while requiring no reference or other
information and performs as well as other methods.
Finally, I use the Eucalyptus data to investigate the impact of quality score calibra-
tion on the quality of output variant calls and show that improved base quality score
calibration increases the sensitivity and reduces the false positive rate of a variant
calling algorithm.
ContributorsOrr, Adam James (Author) / Cartwright, Reed (Thesis advisor) / Wilson, Melissa (Committee member) / Kusumi, Kenro (Committee member) / Taylor, Jesse (Committee member) / Pfeifer, Susanne (Committee member) / Arizona State University (Publisher)
Created2020
158788-Thumbnail Image.png
Description
This thesis reviews the initial cases of fetal surgery to correct myelomeningocele, a severe form of spina bifida, and discusses the human and social dimensions of the procedure. Myelomeningocele is a fetal anomaly that forms from improper closure of the spinal cord and the tissues that surround it. Physicians perform

This thesis reviews the initial cases of fetal surgery to correct myelomeningocele, a severe form of spina bifida, and discusses the human and social dimensions of the procedure. Myelomeningocele is a fetal anomaly that forms from improper closure of the spinal cord and the tissues that surround it. Physicians perform fetal surgery on a developing fetus, while it is in the womb, to mitigate its impacts. Fetal surgery to correct this condition was first performed experimentally in the mid-1990and as of 2020, it is commonly performed. The initial cases illuminated important human and social dimensions of the technique, including physical risks, psychological dimensions, physician bias, and religious convictions, which affect decision-making concerning this fetal surgery. Enduring questions remain in 2020. The driving question for this thesis is: given those human and social dimensions that surround fetal surgery to correct myelomeningocele, whether and when is the surgery justified? This thesis shows that more research is needed to answer or clarify this question.
ContributorsEllis, Brianna (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Thesis advisor) / Robert, Jason (Committee member) / Arizona State University (Publisher)
Created2020