This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 10
Filtering by

Clear all filters

151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
151089-Thumbnail Image.png
Description
Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI)

Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI) is used to describe the state of the ENSO, with positive (negative) values referring to an El Niño condition (La Niña condition). This study examined the connection between the MEI and precipitation, discharge, and total nitrogen (TN) and total phosphorus (TP) concentrations in the Upper Salt River Watershed in Arizona. Unrestricted regression models (UMs) and restricted regression models (RMs) were used to investigate the relationship between the discharges in Tonto Creek and the Salt River as functions of the magnitude of the MEI, precipitation, and season (winter/summer). The results suggest that in addition to precipitation, the MEI/season relationship is an important factor for predicting discharge. Additionally, high discharge events were associated with high magnitude ENSO events, both El Niño and La Niña. An UM including discharge and season, and a RM (restricting the seasonal factor to zero), were applied to TN and TP concentrations in the Salt River. Discharge and seasonality were significant factors describing the variability in TN in the Salt River while discharge alone was the significant factor describing TP. TN and TP in Roosevelt Lake were evaluated as functions of both discharge and MEI. Some significant correlations were found but internal nutrient cycling as well as seasonal stratification of the water column of the lake likely masks the true relationships. Based on these results, the MEI is a useful predictor of discharge, as well as nutrient loading in the Salt River Watershed through the Salt River and Tonto Creek. A predictive model investigating the effect of ENSO on nutrient loading through discharge can illustrate the effects of large scale climate patterns on smaller systems.
ContributorsSversvold, Darren (Author) / Neuer, Susanne (Thesis advisor) / Elser, James (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
154017-Thumbnail Image.png
Description
Phosphorus (P), an essential nutrient for growth of all organisms, is often in limited biological supply for herbivore consumers compared to other elements, such as carbon (C). Ecological stoichiometry studies have assessed responses of filter-feeding zooplankton from the genus Daphnia to single and multi-species food resources that are P-limited,

Phosphorus (P), an essential nutrient for growth of all organisms, is often in limited biological supply for herbivore consumers compared to other elements, such as carbon (C). Ecological stoichiometry studies have assessed responses of filter-feeding zooplankton from the genus Daphnia to single and multi-species food resources that are P-limited, finding decreased growth as a result to changes in metabolic processes and feeding behavior. Conversely, recent laboratory studies have shown that P-rich algal food resources also result in decreased growth rates for Daphnia, though the possible mechanisms behind this maladaptive response is understudied. Moreover, no published study tests the existence of the “stoichiometric knife edge” hypothesis for low C:P under field conditions. To address this lack of information, I measured growth rate as well as respiration and ingestion rates for D. magna, D. pulicaria, and D. pulex that were fed natural lake seston experimentally enriched with different levels of PO43-. I found heterogeneous effects of high dietary P across Daphnia species. Growth rate responses for D. magna were strong and indicated a negative effect of high-P, most likely as a result to decreased ingestion rates that were observed. The seston treatments did not elicit significant growth rate responses for D. pulex and D. pulicaria, but significant responses to respiration rates were observed for all species. Consumer body stoichiometry, differences in seston C:P for each experiment, or differential assimilation by producer types may be driving these results. My study suggests that the stoichiometric knife edge documented in laboratory studies under low C:P conditions may not operate to the same degree when natural seston is the food source; diet diversity may be driving complex nuances for consumer performance that were previously overlooked.
ContributorsCurrier, Courtney M (Author) / Currier, James (Thesis advisor) / Harrison, Jon (Committee member) / Neuer, Susanne (Committee member) / Arizona State University (Publisher)
Created2015
154916-Thumbnail Image.png
Description
Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can

Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can be detected, or in which they use only a subset of receptors for specific behaviors. Branchiopod crustaceans are of interest for the study of unconventional color vision because they express multiple visual pigments in their compound eyes, have a simple repertoire of visually guided behavior, inhabit unique and highly variable light environments, and possess secondary neural simplifications. I first tested the behavioral responses of two representative species of branchiopods from separate orders, Streptocephalus mackini Anostracans (fairy shrimp), and Triops longicaudatus Notostracans (tadpole shrimp). I found that they maintain vertical position in the water column over a broad range of intensities and wavelengths, and respond behaviorally even at intensities below those of starlight. Accordingly, light intensities of their habitats at shallow depths tend to be dimmer than terrestrial habitats under starlight. Using models of how their compound eyes and the first neuropil of their optic lobe process visual cues, I infer that both orders of branchiopods use spatial summation from multiple compound eye ommatidia to respond at low intensities. Then, to understand if branchiopods use unconventional vision to guide these behaviors, I took electroretinographic recordings (ERGs) from their compound eyes and used models of spectral absorptance for a multimodel selection approach to make inferences about the number of photoreceptor classes in their eyes. I infer that both species have four spectral classes of photoreceptors that contribute to their ERGs, suggesting unconventional vision guides the described behavior. I extended the same modeling approach to other organisms, finding that the model inferences align with the empirically determined number of photoreceptor classes for this diverse set of organisms. This dissertation expands the conceptual framework of color vision research, indicating unconventional vision is more widespread than previously considered, and explains why some organisms have more spectral classes than would be expected from their behavioral repertoire.
ContributorsLessios, Nicolas (Author) / Rutowski, Ronald L (Thesis advisor) / Cohen, Jonathan H (Thesis advisor) / Harrison, John (Committee member) / Neuer, Susanne (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
155857-Thumbnail Image.png
Description
Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex

Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex contextual connections of gene

regulatory networks in natural settings often impede the experimental establishment of

the function and dynamics of each specific gene network.

In this work, diverse synthetic gene networks are rationally designed and

constructed using well-characterized biological components to approach the cell fate

determination and state transition dynamics in multistable systems. Results show that

unimodality and bimodality and trimodality can be achieved through manipulation of the

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to

communicate with each other.

Moreover, a synthetic quadrastable circuit is also built and experimentally

demonstrated to have four stable steady states. Experiments, guided by mathematical

modeling predictions, reveal that sequential inductions generate distinct cell fates by

changing the landscape in sequence and hence navigating cells to different final states.

Circuit function depends on the specific protein expression levels in the circuit.

We then establish a protein expression predictor taking into account adjacent

transcriptional regions’ features through construction of ~120 synthetic gene circuits

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks.

These combined results illustrate applications of synthetic gene networks to

understand the cell fate determination and state transition dynamics in multistable

systems. A protein-expression predictor is also developed to evaluate and tune circuit

dynamics.
ContributorsWu, Fuqing (Author) / Wang, Xiao (Thesis advisor) / Haynes, Karmella (Committee member) / Marshall, Pamela (Committee member) / Nielsen, David (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
157920-Thumbnail Image.png
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones,

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
ContributorsVargas, Daniel A. (Author) / Haynes, Karmella (Thesis advisor) / Wang, Xiao (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2019
158549-Thumbnail Image.png
Description
Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter),

Plastic pollution has become a global threat to ecosystems worldwide, with microplastics now representing contaminants reported to occur in ambient air, fresh water, seawater, soils, fauna and people. Over time, larger macro-plastics are subject to weathering and fragmentation, resulting in smaller particles, termed ‘microplastics’ (measuring < 5 mm in diameter), which have been found to pollute virtually every marine and terrestrial ecosystem on the planet. This thesis explored the transfer of plastic pollutants from consumer products into the built water environment and ultimately into global aquatic and terrestrial ecosystems.

A literature review demonstrated that municipal sewage sludge produced by wastewater treatment plants around the world contains detectable quantities of microplastics. Application of sewage sludge on land was shown to represent a mechanism for transfer of microplastics from wastewater into terrestrial environments, with some countries reporting as high as 113 ± 57 microplastic particles per gram of dry sludge.

To address the notable shortcoming of inconsistent reporting practices for microplastic pollution, this thesis introduced a novel, online calculator that converts the number of plastic particles into the unambiguous metric of mass, thereby making global studies on microplastic pollution directly comparable.

This thesis concludes with an investigation of a previously unexplored and more personal source of plastic pollution, namely the disposal of single-use contact lenses and an assessment of the magnitude of this emerging source of environmental pollution. Using an online survey aimed at quantifying trends with the disposal of lenses in the US, it was discovered that 20 ± 0.8% of contact lens wearers flushed their used lenses down the drain, amounting to 44,000 ± 1,700 kg y-1 of lens dry mass discharged into US wastewater.

From the results it is concluded that conventional and medical microplastics represent a significant global source of pollution and a long-term threat to ecosystems around the world. Recommendations are provided on how to limit the entry of medical microplastics into the built water environment to limit damage to ecosystems worldwide.
ContributorsRolsky, Charles (Author) / Halden, Rolf (Thesis advisor) / Green, Matthew (Committee member) / Neuer, Susanne (Committee member) / Polidoro, Beth (Committee member) / Smith, Andrew (Committee member) / Arizona State University (Publisher)
Created2020
161639-Thumbnail Image.png
Description
One of the most pronounced issues affecting the management of fisheries today is bycatch, or the unintentional capture of non-target species of marine life. Bycatch has proven to be detrimental for many species, including marine megafauna and pelagic fishes. One method of reducing bycatch is illuminated gillnets, which involves utilizing

One of the most pronounced issues affecting the management of fisheries today is bycatch, or the unintentional capture of non-target species of marine life. Bycatch has proven to be detrimental for many species, including marine megafauna and pelagic fishes. One method of reducing bycatch is illuminated gillnets, which involves utilizing the differences in biological visual capabilities and behaviors between species of bycatch and target fish catch. To date, all studies conducted on the effects of net illumination on bycatch and target fish catch have been conducted at night. In this study, the effects of net illumination on bycatch, target fish catch, and market value during both night and day periods at Baja California Sur, Mexico were compared. It was found that i) net illumination is effective (p < 0.05) at reducing bycatch of finfish during the day and at night, ii) net illumination at night is more effective (p < 0.05) at reducing bycatch for elasmobranchs, Humboldt squid, and aggregate bycatch than during the day, iii) time of day did not have an effect (p > 0.05) on sea turtle bycatch, and iv) net illumination did not significantly (p > 0.05)affect target catch or market value at night or during the day. These results suggest that net illumination may be an effective strategy for reducing finfish bycatch in fisheries that operate during the day or across 24 h periods, and is especially effective for reducing elasmobranch, Humboldt squid, and total bycatch biomass at night.
ContributorsDenton, Kyli Elise (Author) / Senko, Jesse (Thesis advisor) / Neuer, Susanne (Thesis advisor) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2021
168792-Thumbnail Image.png
Description
A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain

A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve successive cell fate transitions, nonlinear resource competition within synthetic gene circuits is unveiled. However, in vivo it can be seen that the transition path was redirected with the activation of one switch always prevailing over that of the other, contradictory to coactivation theoretically expected. This behavior is a result of resource competition between genes and follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the two modules. Despite investigation demonstrating that resource competition between gene modules can significantly alter circuit deterministic behaviors, how resource competition contributes to gene expression noise and how this noise can be controlled is still an open issue of fundamental importance in systems biology and biological physics. By utilizing a two-gene circuit, the effects of resource competition on protein expression noise levels can be closely studied. A surprising double-edged role is discovered: the competition for these resources decreases noise while the constraint on resource availability adds its own term of noise into the system, denoted “resource competitive” noise. Noise reduction effects are then studied using orthogonal resources. Results indicate that orthogonal resources are a good strategy for eliminating the contribution of resource competition to gene expression noise. Noise propagation through a cascading circuit has been considered without resource competition. It has been noted that the noise from upstream genes can be transmitted downstream. However, resource competition’s effects on this cascading noise have yet to be studied. When studied, it is found that resource competition can induce stochastic state switching and perturb noise propagation. Orthogonal resources can remove some of the resource competitive behavior and allow for a system with less noise.
ContributorsGoetz, Hanah Elizabeth (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2022