This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

156388-Thumbnail Image.png
Description
The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance

The Multiple Antibiotic Resistance Regulator Family (MarR) are transcriptional regulators, many of which forms a dimer. Transcriptional regulation provides bacteria a stabilized responding system to ensure the bacteria is able to efficiently adapt to different environmental conditions. The main function of the MarR family is to create multiple antibiotic resistance from a mutated protein; this process occurs when the MarR regulates an operon. We hypothesized that different transcriptional regulator genes have interactions with each other. It is known that Salmonella pagC transcription is activated by three regulators, i.e., SlyA, MprA, and PhoP. Bacterial Adenylate Cyclase-based Two-Hybrid (BACTH) system was used to research the protein-protein interactions in SlyA, MprA, and PhoP as heterodimers and homodimers in vivo. Two fragments, T25 and T18, that lack endogenous adenylate cyclase activity, were used for construction of chimeric proteins and reconstruction of adenylate cyclase activity was tested. The significant adenylate cyclase activities has proved that SlyA is able to form homodimers. However, weak adenylate cyclase activities in this study has proved that MprA and PhoP are not likely to form homodimers, and no protein-protein interactions were detected in between SlyA, MprA and PhoP, which no heterodimers have formed in between three transcriptional regulators.
ContributorsTao, Zenan (Author) / Shi, Yixin (Thesis advisor) / Wang, Xuan (Committee member) / Bean, Heather (Committee member) / Arizona State University (Publisher)
Created2018
156597-Thumbnail Image.png
Description
Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical

Lignocellulosic biomass represents a renewable domestic feedstock that can support large-scale biochemical production processes for fuels and specialty chemicals. However, cost-effective conversion of lignocellulosic sugars into valuable chemicals by microorganisms still remains a challenge. Biomass recalcitrance to saccharification, microbial substrate utilization, bioproduct titer toxicity, and toxic chemicals associated with chemical pretreatments are at the center of the bottlenecks limiting further commercialization of lignocellulose conversion. Genetic and metabolic engineering has allowed researchers to manipulate microorganisms to overcome some of these challenges, but new innovative approaches are needed to make the process more commercially viable. Transport proteins represent an underexplored target in genetic engineering that can potentially help to control the input of lignocellulosic substrate and output of products/toxins in microbial biocatalysts. In this work, I characterize and explore the use of transport systems to increase substrate utilization, conserve energy, increase tolerance, and enhance biocatalyst performance.
ContributorsKurgan, Gavin (Author) / Wang, Xuan (Thesis advisor) / Nielsen, David (Committee member) / Misra, Rajeev (Committee member) / Nannenga, Brent (Committee member) / Arizona State University (Publisher)
Created2018
154836-Thumbnail Image.png
Description
Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is

Emergence of multidrug resistant (MDR) bacteria is a major concern to global health. One of the major MDR mechanisms bacteria employ is efflux pumps for the expulsion of drugs from the cell. In Escherichia coli, AcrAB-TolC proteins constitute the major chromosomally-encoded drug efflux system. AcrB, a trimeric membrane protein is well-known for its substrate promiscuity. It has the ability to efflux a broad spectrum of substrates alongside compounds such as dyes, detergent, bile salts and metabolites. Newly identified AcrB residues were shown to be functionally relevant in the drug binding and translocation pathway using a positive genetic selection strategy. These residues—Y49, V127, D153, G288, F453, and L486—were identified as the sites of suppressors of an alteration, F610A, that confers a drug hypersensitivity phenotype. Using site-directed mutagenesis (SDM) along with the real-time efflux and the classical minimum inhibitory concentration (MIC) assays, I was able to characterize the mechanism of suppression.

Three approaches were used for the characterization of these suppressors. The first approach focused on side chain specificity. The results showed that certain suppressor sites prefer a particular side chain property, such as size, to overcome the F610A defect. The second approach focused on the effects of efflux pump inhibitors. The results showed that though the suppressor residues were able to overcome the intrinsic defect of F610A, they were unable to overcome the extrinsic defect caused by the efflux pump inhibitors. This showed that the mechanism by which F610A imposes its effect on AcrB function is different than that of the efflux pump inhibitors. The final approach was to determine whether suppressors mapping in the periplasmic and trans-membrane domains act by the same or different mechanisms. The results showed both overlapping and distinct mechanisms of suppression.

To conclude, these approaches have provided a deeper understanding of the mechanisms by which novel suppressor residues of AcrB overcome the functional defect of the drug binding domain alteration, F610A.
ContributorsBlake, Mellecha (Author) / Misra, Rajeev (Thesis advisor) / Stout, Valerie (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022
154350-Thumbnail Image.png
Description
Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli

Biomass synthesis is a competing factor in biological systems geared towards generation of commodity and specialty chemicals, ultimately limiting maximum titer and yield; in this thesis, a widely generalizable, modular approach focused on decoupling biomass synthesis from the production of the phenylalanine in a genetically modified strain of E. coli BW25113 was explored with the use of synthetic trans-encoded small RNA (sRNA) to achieve greater efficiency. The naturally occurring sRNA MicC was used as a scaffold, and combined on a plasmid with a promoter for anhydrous tetracycline (aTc) and a T1/TE terminator. The coding sequence corresponding to the target binding site for fourteen potentially growth-essential gene targets as well as non-essential lacZ was placed in the seed region of the of the sRNA scaffold and transformed into BW25113, effectively generating a unique strain for each gene target. The BW25113 strain corresponding to each gene target was screened in M9 minimal media; decreased optical density and elongated cell morphology changes were observed and quantified in all induced sRNA cases where growth-essential genes were targeted. Six of the strains targeting different aspects of cell division that effectively suppressed growth and resulted in increased cell size were then screened for viability and metabolic activity in a scaled-up shaker flask experiment; all six strains were shown to be viable during stationary phase, and a metabolite analysis showed increased specific glucose consumption rates in induced strains, with unaffected specific glucose consumption rates in uninduced strains. The growth suppression, morphology and metabolic activity of the induced strains in BW25113 was compared to the bacteriostatic additives chloramphenicol, tetracycline, and streptomycin. At this same scale, the sRNA plasmid targeting the gene murA was transformed into BW25113 pINT-GA, a phenylalanine overproducer with the feedback resistant genes aroG and pheA overexpressed. Two induction times were explored during exponential phase, and while the optimal induction time was found to increase titer and yield amongst the BW25113 pINT-GA murA sRNA variant, overall this did not have as great a titer or yield as the BW25113 pINT-GA strain without the sRNA plasmid; this may be a result of the cell filamentation.
ContributorsHerschel, Daniel Jordan (Author) / Nielsen, David R (Thesis advisor) / Torres, César I (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2016
161799-Thumbnail Image.png
Description
The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality

The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality in animals. An overarching hypothesis is that increased levels of investment into inter-sexual choice and intra-sexual competition will reduce sleep. An alternative hypothesis is that sexual ornamentation (e.g. avian plumage coloration and song) may have evolved to communicate sleep health and may therefore be positively related to sleep investment. In this dissertation, I studied how sleep is related to components of sexual and social selection in animals (mostly in birds). I first reviewed the literature for empirical examples of how social and sexual selection drive animal sleep patterns and found support for this relationship in some common types of inter-individual interactions (e.g. mating, intra-sexual competition, parent-offspring interactions, group interactions); I also provided new ideas and hypotheses for future research. I then tested associations between sleep behavior with expression of ornaments (song and plumage coloration), using the house finch (Haemorhous mexicanus) as a model system. For both color and song, I found support for the hypothesis that individuals with exaggerated ornaments slept deeper and longer, suggesting that sleep is a critical resource for ornament elaboration and/or may be communicated by both types of sexual signal. Following this, I tested the phylogenetic association between sleep and social/sexual selection as well as other life-history traits across birds. I found that more territorial bird species sleep less, that polygynous birds sleep more than monogamous and polygynandrous birds, and that birds migrating longer distances sleep less and have less REM sleep. Finally, in the interest of applying basic knowledge about sleep biology to current global problems, I found support for the hypothesis that house finches from city environments have developed resilience to artificial light pollution at night. Altogether, I found that social, sexual, and life-history traits are indeed important and overlooked drivers of sleep behavior from multiple levels of analysis.
ContributorsHutton, Pierce (Author) / McGraw, Kevin J (Thesis advisor) / Rutowski, Ronald L (Committee member) / Deviche, Pierre J (Committee member) / Sweazea, Karen L (Committee member) / Lesku, John A (Committee member) / Arizona State University (Publisher)
Created2021
161999-Thumbnail Image.png
Description
Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with

Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with regard to carotenoid allocation towards life-history traits, but direct quantification of variation in carotenoid distribution on a whole-organism scale has yet to be done. Additionally, while we know that scavenger receptor B1 (SCARB1) is important for carotenoid absorption in birds, little is known about the factors that predict how SCARB1 is expressed in wild populations. For my dissertation, I first reviewed challenges associated with statistically analyzing tissue distributions of nutrients (nutrient profiles) and tested how tissue carotenoid distributions (carotenoid profiles) varied by sex, season, health state, and coloration in two bird species, house finches (Haemorhous mexicanus) and zebra finches (Taeniopygia guttata). Then, I investigated the relationship between dietary carotenoid availability, relative expression of SCARB1, and extent of carotenoid-based coloration in a comparative study of wood-warblers (Parulidae). In my review of studies analyzing nutrient profiles, I found that multivariate analyses were the most common, but studies rarely reported intercorrelations among nutrient types. In house finches, all tissue carotenoid profiles varied by sex, season, and coloration. For example, males during autumn (molt) had higher concentrations of 3-hydroxyechinenone (the major red carotenoid in sexually attractive male feathers) in most but not all tissues compared to other season and sex combinations. However, the relationship between color and carotenoid profiles depended on the color metric. In zebra finches, only muscle and spleen carotenoid profiles varied between immune-challenged and control birds. In wood-warblers, I found that capacity to absorb carotenoids was positively correlated with the evolution of carotenoid-based coloration but negatively associated with liver carotenoid accumulation. Altogether, my dissertation illustrates (a) the context-dependence of tissue carotenoid profile variation, (b) that carotenoid-based integumentary coloration is a reflection of tissue carotenoid profiles, and (c) that digestive physiology (e.g., carotenoid absorption) is an important consideration in the study of diet and coloration in wild birds.
ContributorsWebb, Emily (Author) / McGraw, Kevin J (Thesis advisor) / Deviche, Pierre (Committee member) / Martins, Emilia (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2021
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
193397-Thumbnail Image.png
Description
Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding

Reactive oxygen species (ROS) including superoxide, hydrogen peroxide, and hydroxyl radicals occur naturally as a byproduct of aerobic respiration. To mitigate damages caused by ROS, Escherichia coli employs defenses including two cytosolic superoxide dismutases (SODs), which convert superoxide to hydrogen peroxide. Deletion of both sodA and sodB, the genes coding for the cytosolic SOD enzymes, results in a strain that is unable to grow on minimal medium without amino acid supplementation. Additionally, deletion of both cytosolic SOD enzymes in a background containing the relA1 allele, an inactive version of the relA gene that contributes to activation of stringent response by amino acid starvation, results in a strain that is unable to grow aerobically, even on rich medium. These observations point to a relationship between the stringent response and oxidative stress. To gain insight into this relationship, suppressors were isolated by growing the ∆sodAB relA1 cells aerobically on rich medium, and seven suppressors were further examined to characterize distinct colony sizes and temperature sensitivity phenotypes. In three of these suppressor-containing strains, the relA1 allele was successfully replaced by the wild type relA allele to allow further study in aerobic conditions. None of those three suppressors were found to increase tolerance to exogenous superoxides produced by paraquat, which shows that these mutations only overcome the superoxide buildup that naturally occurs from deletion of SODs. Because each of these suppressors had unique phenotypes, it is likely that they confer tolerance to SOD-dependent superoxide buildup by different mechanisms. Two of these three suppressors have been sent for whole-genome sequencing to identify the location of the suppressor mutation and determine the mechanism by which they confer superoxide tolerance.
ContributorsFlake, Melissa (Author) / Misra, Rajeev (Thesis advisor) / Shah, Dhara (Committee member) / Wang, Xuan (Committee member) / Arizona State University (Publisher)
Created2024