This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152461-Thumbnail Image.png
Description
Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior

Foraging has complex effects on whole-organism homeostasis, and there is considerable evidence that foraging behavior is influenced by both environmental factors (e.g., food availability, predation risk) and the physiological condition of an organism. The optimization of foraging behavior to balance costs and benefits is termed state-dependent foraging (SDF) while behavior that seeks to protect assets of fitness is termed the asset protection principle (APP). A majority of studies examining SDF have focused on the role that energy balance has on the foraging of organisms with high metabolism and high energy demands ("high-energy systems" such as endotherms). In contrast, limited work has examined whether species with low energy use ("low-energy systems" such as vertebrate ectotherms) use an SDF strategy. Additionally, there is a paucity of evidence demonstrating how physiological and environmental factors other than energy balance influence foraging behavior (e.g. hydration state and free-standing water availability). Given these gaps in our understanding of SDF behavior and the APP, I examined the state-dependency and consequences of foraging in a low-energy system occupying a resource-limited environment - the Gila monster (Heloderma suspectum, Cope 1869). In contrast to what has been observed in a wide variety of taxa, I found that Gila monsters do not use a SDF strategy to manage their energy reserves and that Gila monsters do not defend their energetic assets. However, hydration state and free-standing water availability do affect foraging behavior of Gila monsters. Additionally, as Gila monsters become increasingly dehydrated, they reduce activity to defend hydration state. The SDF behavior of Gila monsters appears to be largely driven by the fact that Gila monsters must separately satisfy energy and water demands with food and free-standing water, respectively, in conjunction with the timescale within which Gila monsters balance their energy and water budgets (supra-annually versus annually, respectively). Given these findings, the impact of anticipated changes in temperature and rainfall patterns in the Sonoran Desert are most likely going to pose their greatest risks to Gila monsters through the direct and indirect effects on water balance.
ContributorsWright, Christian (Author) / Denardo, Dale F. (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Sullivan, Brian (Committee member) / Wolf, Blair (Committee member) / Arizona State University (Publisher)
Created2014
153216-Thumbnail Image.png
Description
For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance

For animals that experience annual cycles of gonad development, the seasonal timing (phenology) of gonad growth is a major adaptation to local environmental conditions. To optimally time seasonal gonad growth, animals use environmental cues that forecast future conditions. The availability of food is one such environmental cue. Although the importance of food availability has been appreciated for decades, the physiological mechanisms underlying the modulation of seasonal gonad growth by this environmental factor remain poorly understood.

Urbanization is characterized by profound environmental changes, and urban animals must adjust to an environment vastly different from that of their non-urban conspecifics. Evidence suggests that birds adjust to urban areas by advancing the timing of seasonal breeding and gonad development, compared to their non-urban conspecifics. A leading hypothesis to account for this phenomenon is that food availability is elevated in urban areas, which improves the energetic status of urban birds and enables them to initiate gonad development earlier than their non-urban conspecifics. However, this hypothesis remains largely untested.

My dissertation dovetailed comparative studies and experimental approaches conducted in field and captive settings to examine the physiological mechanisms by which food availability modulates gonad growth and to investigate whether elevated food availability in urban areas advances the phenology of gonad growth in urban birds. My captive study demonstrated that energetic status modulates reproductive hormone secretion, but not gonad growth. By contrast, free-ranging urban and non-urban birds did not differ in energetic status or plasma levels of reproductive hormones either in years in which urban birds had advanced phenology of gonad growth or in a year that had no habitat-related disparity in seasonal gonad growth. Therefore, my dissertation provides no support for the hypothesis that urban birds begin seasonal gonad growth because they are in better energetic status and increase the secretion of reproductive hormones earlier than non-urban birds. My studies do suggest, however, that the phenology of key food items and the endocrine responsiveness of the reproductive system may contribute to habitat-related disparities in the phenology of gonad growth.
ContributorsDavies, Scott (Author) / Deviche, Pierre (Thesis advisor) / Sweazea, Karen (Committee member) / McGraw, Kevin (Committee member) / Orchinik, Miles (Committee member) / Warren, Paige (Committee member) / Arizona State University (Publisher)
Created2014
154009-Thumbnail Image.png
Description
Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested

Photosynthesis converts sunlight to biomass at a global scale. Among the photosynthetic organisms, cyanobacteria provide an excellent model to study how photosynthesis can become a practical platform of large-scale biotechnology. One novel approach involves metabolically engineering the cyanobacterium Synechocystis sp. PCC 6803 to excrete laurate, which is harvested directly.

This work begins by defining a working window of light intensity (LI). Wild-type and laurate-excreting Synechocystis required an LI of at least 5 µE/m2-s to sustain themselves, but are photo-inhibited by LI of 346 to 598 µE/m2-s.

Fixing electrons into valuable organic products, e.g., biomass and excreted laurate, is critical to success. Wild-type Synechocystis channeled 75% to 84% of its fixed electrons to biomass; laurate-excreting Synechocystis fixed 64 to 69% as biomass and 6.6% to 10% as laurate. This means that 16 to 30% of the electrons were diverted to non-valuable soluble products, and the trend was accentuated with higher LI.

How the Ci concentration depended on the pH and the nitrogen source was quantified by the proton condition and experimentally validated. Nitrate increased, ammonium decreased, but ammonium nitrate stabilized alkalinity and Ci. This finding provides a mechanistically sound tool to manage Ci and pH independently.

Independent evaluation pH and Ci on the growth kinetics of Synechocystis showed that pH 8.5 supported the fastest maximum specific growth rate (µmax): 2.4/day and 1.7/day, respectively, for the wild type and modified strains with LI of 202 µE/m2-s. Half-maximum-rate concentrations (KCi) were less than 0.1 mM, meaning that Synechocystis should attain its µmax with a modest Ci concentration (≥1.0 mM).

Biomass grown with day-night cycles had a night endogenous decay rate of 0.05-1.0/day, with decay being faster with higher LI and the beginning of dark periods. Supplying light at a fraction of daylight reduced dark decay rate and improved overall biomass productivity.

This dissertation systematically evaluates and synthesizes fundamental growth factors of cyanobacteria: light, inorganic carbon (Ci), and pH. LI remains the most critical growth condition to promote biomass productivity and desired forms of biomass, while Ci and pH now can be managed to support optimal productivity.
ContributorsNguyen, Binh Thanh (Author) / Rittmann, Bruce E. (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Westerhoff, Paul (Committee member) / Arizona State University (Publisher)
Created2015
154916-Thumbnail Image.png
Description
Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can

Why do many animals possess multiple classes of photoreceptors that vary in the wavelengths of light to which they are sensitive? Multiple spectral photoreceptor classes are a requirement for true color vision. However, animals may have unconventional vision, in which multiple spectral channels broaden the range of wavelengths that can be detected, or in which they use only a subset of receptors for specific behaviors. Branchiopod crustaceans are of interest for the study of unconventional color vision because they express multiple visual pigments in their compound eyes, have a simple repertoire of visually guided behavior, inhabit unique and highly variable light environments, and possess secondary neural simplifications. I first tested the behavioral responses of two representative species of branchiopods from separate orders, Streptocephalus mackini Anostracans (fairy shrimp), and Triops longicaudatus Notostracans (tadpole shrimp). I found that they maintain vertical position in the water column over a broad range of intensities and wavelengths, and respond behaviorally even at intensities below those of starlight. Accordingly, light intensities of their habitats at shallow depths tend to be dimmer than terrestrial habitats under starlight. Using models of how their compound eyes and the first neuropil of their optic lobe process visual cues, I infer that both orders of branchiopods use spatial summation from multiple compound eye ommatidia to respond at low intensities. Then, to understand if branchiopods use unconventional vision to guide these behaviors, I took electroretinographic recordings (ERGs) from their compound eyes and used models of spectral absorptance for a multimodel selection approach to make inferences about the number of photoreceptor classes in their eyes. I infer that both species have four spectral classes of photoreceptors that contribute to their ERGs, suggesting unconventional vision guides the described behavior. I extended the same modeling approach to other organisms, finding that the model inferences align with the empirically determined number of photoreceptor classes for this diverse set of organisms. This dissertation expands the conceptual framework of color vision research, indicating unconventional vision is more widespread than previously considered, and explains why some organisms have more spectral classes than would be expected from their behavioral repertoire.
ContributorsLessios, Nicolas (Author) / Rutowski, Ronald L (Thesis advisor) / Cohen, Jonathan H (Thesis advisor) / Harrison, John (Committee member) / Neuer, Susanne (Committee member) / McGraw, Kevin (Committee member) / Arizona State University (Publisher)
Created2016
155537-Thumbnail Image.png
Description
The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection

The molt from pupae to adult stage, called eclosion, occurs at specific times of the day in many holometabolous insects. These events are not well studied within Lepidopteran species. It was hypothesized that the eclosion timing in a species may be shaped by strong selective pressures, such as sexual selection in the context of male-male competition. The daily timing of eclosion was measured for six species of nymphalid butterflies. This was done by rearing individuals to pupation, placing the pupa in a greenhouse, and video recording eclosion to obtain the time of day at which it occurred. Four species exhibited clustered eclosion distributions that were concentrated to within 201 minutes after sunrise and were significantly different from one another. The other two species exhibited eclosion times that were non-clustered. There were no differences between sexes within species. The data support a relationship between the timing of eclosion each day and the timing of mating activities, but other as of yet undetermined selective pressures may also influence eclosion timing.
ContributorsSencio, Kaylon (Author) / Rutowski, Ron (Thesis advisor) / McGraw, Kevin (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2017
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
149679-Thumbnail Image.png
Description
Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's

Though it is a widespread adaptation in humans and many other animals, parental care comes in a variety of forms and its subtle physiological costs, benefits, and tradeoffs related to offspring are often unknown. Thus, I studied the hydric, respiratory, thermal, and fitness dynamics of maternal egg-brooding behavior in Children's pythons (Antaresia childreni). I demonstrated that tight coiling detrimentally creates a hypoxic developmental environment that is alleviated by periodic postural adjustments. Alternatively, maternal postural adjustments detrimentally elevate rates of egg water loss relative to tight coiling. Despite ventilating postural adjustments, the developmental environment becomes increasingly hypoxic near the end of incubation, which reduces embryonic metabolism. I further demonstrated that brooding-induced hypoxia detrimentally affects offspring size, performance, locomotion, and behavior. Thus, parental care in A. childreni comes at a cost to offspring due to intra-offspring tradeoffs (i.e., those that reflect competing offspring needs, such as water balance and respiration). Next, I showed that, despite being unable to intrinsically produce body heat, A. childreni adjust egg-brooding behavior in response to shifts in nest temperature, which enhances egg temperature (e.g., reduced tight coiling during nest warming facilitated beneficial heat transfer to eggs). Last, I demonstrated that A. childreni adaptively adjust their egg-brooding behaviors due to an interaction between nest temperature and humidity. Specifically, females' behavioral response to nest warming was eliminated during low nest humidity. In combination with other studies, these results show that female pythons sense environmental temperature and humidity and utilize this information at multiple time points (i.e., during gravidity [egg bearing], at oviposition [egg laying], and during egg brooding) to enhance the developmental environment of their offspring. This research demonstrates that maternal behaviors that are simple and subtle, yet easily quantifiable, can balance several critical developmental variables (i.e., thermoregulation, water balance, and respiration).
ContributorsStahlschmidt, Zachary R (Author) / DeNardo, Dale F (Thesis advisor) / Harrison, Jon (Committee member) / McGraw, Kevin (Committee member) / Rutowski, Ronald (Committee member) / Walsberg, Glenn (Committee member) / Arizona State University (Publisher)
Created2011
171930-Thumbnail Image.png
Description
Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to

Environmentally harmful byproducts from solid waste’s decomposition, including methane (CH4) emissions, are managed through standardized landfill engineering and gas-capture mechanisms. Yet only a limited number of studies have analyzed the development and composition of Bacteria and Archaea involved in CH4 production from landfills. The objectives of this research were to compare microbiomes and bioactivity from CH4-producing communities in contrasting spatial areas of arid landfills and to tests a new technology to biostimulate CH4 production (methanogenesis) from solid waste under dynamic environmental conditions controlled in the laboratory. My hypothesis was that the diversity and abundance of methanogenic Archaea in municipal solid waste (MSW), or its leachate, play an important role on CH4 production partially attributed to the group’s wide hydrogen (H2) consumption capabilities. I tested this hypothesis by conducting complementary field observations and laboratory experiments. I describe niches of methanogenic Archaea in MSW leachate across defined areas within a single landfill, while demonstrating functional H2-dependent activity. To alleviate limited H2 bioavailability encountered in-situ, I present biostimulant feasibility and proof-of-concepts studies through the amendment of zero valent metals (ZVMs). My results demonstrate that older-aged MSW was minimally biostimulated for greater CH4 production relative to a control when exposed to iron (Fe0) or manganese (Mn0), due to highly discernable traits of soluble carbon, nitrogen, and unidentified fluorophores found in water extracts between young and old aged, starting MSW. Acetate and inhibitory H2 partial pressures accumulated in microcosms containing old-aged MSW. In a final experiment, repeated amendments of ZVMs to MSW in a 600 day mesocosm experiment mediated significantly higher CH4 concentrations and yields during the first of three ZVM injections. Fe0 and Mn0 experimental treatments at mesocosm-scale also highlighted accelerated development of seemingly important, but elusive Archaea including Methanobacteriaceae, a methane-producing family that is found in diverse environments. Also, prokaryotic classes including Candidatus Bathyarchaeota, an uncultured group commonly found in carbon-rich ecosystems, and Clostridia; All three taxa I identified as highly predictive in the time-dependent progression of MSW decomposition. Altogether, my experiments demonstrate the importance of H2 bioavailability on CH4 production and the consistent development of Methanobacteriaceae in productive MSW microbiomes.
ContributorsReynolds, Mark Christian (Author) / Cadillo-Quiroz, Hinsby (Thesis advisor) / Krajmalnik-Brown, Rosa (Thesis advisor) / Wang, Xuan (Committee member) / Kavazanjian, Edward (Committee member) / Arizona State University (Publisher)
Created2022