This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
150454-Thumbnail Image.png
Description
Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a

Despite the minor differences in the inclusiveness of the word, there is a general assumption among the scientific community that the 'pursuit of knowledge' is the most fundamental element in defining the word 'science'. However, a closer examination of how science is being conducted in modern-day South Korea reveals a value system starkly different from the value of knowledge. By analyzing the political discourse of the South Korean policymakers, mass media, and government documents, this study examines the definition of science in South Korea. The analysis revealed that the Korean science, informed by the cultural, historical, and societal contexts, is largely focused on the values of national economic prosperity, international competitiveness, and international reputation of the country, overshadowing other values like the pursuit of knowledge or even individual rights. The identification of the new value system in South Korean science deviating from the traditional definition of science implies that there must be other definitions of science that also deviates, and that even in the Western world, the definition of science may yield similar deviations upon closer examination. The compatibility of the South Korean brand of science to the international scientific community also implies that a categorical quality is encompassing these different contextual definitions of science.
ContributorsHyun, Byunghun (Author) / Hurlbut, Ben (Thesis advisor) / Maienschein, Jane (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2011
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
151577-Thumbnail Image.png
Description
A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many

A dental exam in twenty-first century America generally includes the taking of radiographs, which are x-ray images of the mouth. These images allow dentists to see structures below the gum line and within the teeth. Having a patient's radiographs on file has become a dental standard of care in many states, but x-rays were only discovered a little over 100 years ago. This research analyzes how and why the x-ray image has become a ubiquitous tool in the dental field. Primary literature written by dentists and scientists of the time shows that the x-ray was established in dentistry by the 1950s. Therefore, this thesis tracks the changes in x-ray technological developments, the spread of information and related safety concerns between 1890 and 1955. X-ray technology went from being an accidental discovery to a device commonly purchased by dentists. X-ray information started out in the form of the anecdotes of individuals and led to the formation of large professional groups. Safety concerns of only a few people later became an important facet of new devices. These three major shifts are described by looking at those who prompted the changes; they fall into the categories of people, technological artifacts and institutions. The x-ray became integrated into dentistry as a product of the work of people such as C. Edmund Kells, a proponent of dental x-rays, technological improvements including faster film speed, and the influence of institutions such as Victor X-Ray Company and the American Dental Association. These changes that resulted established a strong foundation of x-ray technology in dentistry. From there, the dental x-ray developed to its modern form.
ContributorsMartinez, Britta (Author) / Ellison, Karin (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2013
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
158019-Thumbnail Image.png
Description
Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony.

Ant colonies provide numerous opportunities to study communication systems that maintain the cohesion of eusocial groups. In many ant species, workers have retained their ovaries and the ability to produce male offspring; however, they generally refrain from producing their own sons when a fertile queen is present in the colony. Although mechanisms that facilitate the communication of the presence of a fertile queen to all members of the colony have been highly studied, those studies have often overlooked the added challenge faced by polydomous species, which divide their nests across as many as one hundred satellite nests resulting in workers potentially having infrequent contact with the queen. In these polydomous contexts, regulatory phenotypes must extend beyond the immediate spatial influence of the queen.

This work investigates mechanisms that can extend the spatial reach of fertility signaling and reproductive regulation in three polydomous ant species. In Novomessor cockerelli, the presence of larvae but not eggs is shown to inhibit worker reproduction. Then, in Camponotus floridanus, 3-methylheptacosane found on the queen cuticle and queen-laid eggs is verified as a releaser pheromone sufficient to disrupt normally occurring aggressive behavior toward foreign workers. Finally, the volatile and cuticular hydrocarbon pheromones present on the cuticle of Oecophylla smaragdina queens are shown to release strong attraction response by workers; when coupled with previous work, this result suggests that these chemicals may underly both the formation of a worker retinue around the queen as well as egg-located mechanisms of reproductive regulation in distant satellite nests. Whereas most previous studies have focused on the short-range role of hydrocarbons on the cuticle of the queen, these studies demonstrate that eusocial insects may employ longer range regulatory mechanisms. Both queen volatiles and distributed brood can extend the range of queen fertility signaling, and the use of larvae for fertility signaling suggest that feeding itself may be a non-chemical mechanism for reproductive regulation. Although trail laying in mass-recruiting ants is often used as an example of complex communication, reproductive regulation in ants may be a similarly complex example of insect communication, especially in the case of large, polydomous ant colonies.
ContributorsEbie, Jessica (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Thesis advisor) / Pratt, Stephen (Committee member) / Smith, Brian (Committee member) / Rutowski, Ronald (Committee member) / Arizona State University (Publisher)
Created2020
161448-Thumbnail Image.png
Description
In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based

In the US, menstrual education, which provides key information about menstrual hygiene and health to both young girls and boys, historically lacks biologically accurate information about the menstrual cycle and perpetuates harmful perceptions about female reproductive health. When people are unable to differentiate between normal and abnormal menstrual bleeding, based on a lack of quality menstrual education, common gynecological conditions often remain underreported. This raises a question as to how girls’ menstrual education experiences influence the ways in which they perceive normal menstrual bleeding and seek treatment for common abnormalities, such as heavy, painful, or irregular menstrual bleeding. A mixed methods approach allowed evaluation of girls’ abilities to recognize abnormal menstrual bleeding. A literature review established relevant historical and social context on the prevalence and quality of menstrual education in the US. Then, five focus groups, each including five to eight college-aged women, totaling thirty-three participants, allowed for macro-level analysis of current challenges and gaps in knowledge related to menstruation. To better examine the relationship between menstrual education and reproductive health outcomes, twelve semi-structured, one-on-one interviews allowed micro-level analysis. Those interviews consisted of women diagnosed with endometriosis and polycystic ovary syndrome, common gynecological conditions that include abnormal menstrual bleeding. Developing a codebook of definitions and exemplars of significant text segments and applying it to the collected data revealed several themes. For example, mothers, friends, teachers, the Internet, and social media are among the most common sources of information about menstrual hygiene and health. Yet, women reported that those sources of information often echoed stigmatized ideas about menstruation, eliciting feelings of shame and fear. That poor quality of information was instrumental to women’s abilities to detect and report abnormal menstrual bleeding. Women desire and need biologically accurate information about reproductive health, including menstruation and ovulation, fertility, and methods of birth control as treatments for abnormal menstrual bleeding. Unfortunately, menstrual education often leaves girls ill-equipped to identify and seek treatment for common gynecological conditions. Those findings may influence current menstrual education, incorporating biological information and actively dismissing common misconceptions about menstruation that influence stigma.
ContributorsSantora, Emily Katherine (Author) / Maienschein, Jane (Thesis advisor) / Ellison, Karin (Committee member) / Hurlbut, Ben (Committee member) / Arizona State University (Publisher)
Created2021