This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 8 of 8
Filtering by

Clear all filters

152427-Thumbnail Image.png
Description
Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior

Consideration of both biological and human-use dynamics in coupled social-ecological systems is essential for the success of interventions such as marine reserves. As purely human institutions, marine reserves have no direct effects on ecological systems. Consequently, the success of a marine reserve depends on managers` ability to alter human behavior in the direction and magnitude that supports reserve objectives. Further, a marine reserve is just one component in a larger coupled social-ecological system. The social, economic, political, and biological landscape all determine the social acceptability of a reserve, conflicts that arise, how the reserve interacts with existing fisheries management, accuracy of reserve monitoring, and whether the reserve is ultimately able to meet conservation and fishery enhancement goals. Just as the social-ecological landscape is critical at all stages for marine reserve, from initial establishment to maintenance, the reserve in turn interacts with biological and human use dynamics beyond its borders. Those interactions can lead to the failure of a reserve to meet management goals, or compromise management goals outside the reserve. I use a bio-economic model of a fishery in a spatially patchy environment to demonstrate how the pre-reserve fisheries management strategy determines the pattern of fishing effort displacement once the reserve is established, and discuss the social, political, and biological consequences of different patterns for the reserve and the fishery. Using a stochastic bio-economic model, I demonstrate how biological and human use connectivity can confound the accurate detection of reserve effects by violating assumptions in the quasi-experimental framework. Finally, I examine data on recreational fishing site selection to investigate changes in response to the announcement of enforcement of a marine reserve in the Gulf of California, Mexico. I generate a scale of fines that would fully or partially protect the reserve, providing a data-driven way for managers to balance biological and socio-economic goals. I suggest that natural resource managers consider human use dynamics with the same frequency, rigor, and tools as they do biological stocks.
ContributorsFujitani, Marie (Author) / Abbott, Joshua (Thesis advisor) / Fenichel, Eli (Thesis advisor) / Gerber, Leah (Committee member) / Anderies, John (Committee member) / Arizona State University (Publisher)
Created2014
151089-Thumbnail Image.png
Description
Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI)

Many studies over the past two decades examined the link between climate patterns and discharge, but few have attempted to study the effects of the El Niño Southern Oscillation (ENSO) on localized and watershed specific processes such as nutrient loading in the Southwestern United States. The Multivariate ENSO Index (MEI) is used to describe the state of the ENSO, with positive (negative) values referring to an El Niño condition (La Niña condition). This study examined the connection between the MEI and precipitation, discharge, and total nitrogen (TN) and total phosphorus (TP) concentrations in the Upper Salt River Watershed in Arizona. Unrestricted regression models (UMs) and restricted regression models (RMs) were used to investigate the relationship between the discharges in Tonto Creek and the Salt River as functions of the magnitude of the MEI, precipitation, and season (winter/summer). The results suggest that in addition to precipitation, the MEI/season relationship is an important factor for predicting discharge. Additionally, high discharge events were associated with high magnitude ENSO events, both El Niño and La Niña. An UM including discharge and season, and a RM (restricting the seasonal factor to zero), were applied to TN and TP concentrations in the Salt River. Discharge and seasonality were significant factors describing the variability in TN in the Salt River while discharge alone was the significant factor describing TP. TN and TP in Roosevelt Lake were evaluated as functions of both discharge and MEI. Some significant correlations were found but internal nutrient cycling as well as seasonal stratification of the water column of the lake likely masks the true relationships. Based on these results, the MEI is a useful predictor of discharge, as well as nutrient loading in the Salt River Watershed through the Salt River and Tonto Creek. A predictive model investigating the effect of ENSO on nutrient loading through discharge can illustrate the effects of large scale climate patterns on smaller systems.
ContributorsSversvold, Darren (Author) / Neuer, Susanne (Thesis advisor) / Elser, James (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
150826-Thumbnail Image.png
Description
The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the

The southwestern willow flycatcher (Empidonax traillii extimus) is listed as an endangered species throughout its range in the southwestern United States. Little is known about its sub-population spatial structure and how this impacts its population viability. In conjunction with being listed as endangered, a recovery plan was produced by the US Fish and Wildlife Service, with recovery units (sub-populations) roughly based on major river drainages. In the interest of examining this configuration of sub-populations and their impact on the measured population viability, I applied a multivariate auto-regressive state-space model to a spatially extensive time series of abundance data for the southwestern willow flycatcher over the period spanning 1995-2010 estimating critical growth parameters, correlation in environmental stochasticity or "synchronicity" between sub-populations (recovery units) and extinction risk of the sub-populations and the whole. The model estimates two parameters, the mean and variance of annual growth rate. Of the models I tested, I found the strongest support for a population model in which three of the recovery units were grouped (the Lower Colorado, Gila Basin, and Rio Grande recovery units) while keeping all others separate. This configuration has 6.6 times more support for the observed data than a configuration assigning each recovery unit to a separate sub-population, which is how they are circumscribed in the recovery plan. Given the best model, the mean growth rate is -0.0234 (CI95 -0.0939, 0.0412) with a variance of 0.0597 (CI95 0.0115, 0.1134). This growth rate is not significantly different from zero and this is reflected in the low potential for quasi-extinction. The cumulative probability of the population experiencing at least an 80% decline from current levels within 15 years for some sub-populations were much higher (range: 0.129-0.396 for an 80% decline). These results suggest that the rangewide population has a low risk of extinction in the next 15 years and that the formal recovery units specified by the original recovery plan do not correspond to proper sub-population units as defined by population synchrony.
ContributorsDockens, Patrick E. T. (Author) / Sabo, John (Thesis advisor) / Stromberg, Juliet (Committee member) / Fenichel, Eli (Committee member) / Arizona State University (Publisher)
Created2012
156041-Thumbnail Image.png
Description
What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their

What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory ought to be broad enough as to not be constrained to an Earth-based biochemistry. In this dissertation, the philosophy of studying living systems from the perspective of traditional physics is first explored as a motivating discussion for subsequent research. Traditionally, we have often thought of the physical world from a bottom-up approach: things happening on a smaller scale aggregate into things happening on a larger scale. In addition, the laws of physics are generally considered static over time. Research suggests that biological evolution may follow dynamic laws that (at least in part) change as a function of the state of the system. Of the three featured research projects, cellular automata (CA) are used as a model to study certain aspects of living systems in two of them. These aspects include self-reference, open-ended evolution, local physical universality, subjectivity, and information processing. Open-ended evolution and local physical universality are attributed to the vast amount of innovation observed throughout biological evolution. Biological systems may distinguish themselves in terms of information processing and storage, not outside the theory of computation. The final research project concretely explores real-world phenomenon by means of mapping dominance hierarchies in the evolution of video game strategies. Though the main question of how life differs from non-life remains unanswered, the mechanisms behind open-ended evolution and physical universality are revealed.
ContributorsAdams, Alyssa M (Author) / Walker, Sara I (Thesis advisor) / Davies, Paul CW (Committee member) / Pavlic, Theodore P (Committee member) / Chamberlin, Ralph V (Committee member) / Arizona State University (Publisher)
Created2017
154874-Thumbnail Image.png
Description
The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species

The closer integration of the world economy has yielded many positive benefits including the worldwide diffusion of innovative technologies and efficiency gains following the widening of international markets. However, closer integration also has negative consequences. Specifically, I focus on the ecology and economics of the spread of species and pathogens. I approach the problem using theoretical and applied models in ecology and economics. First, I use a multi-species theoretical network model to evaluate the ability of dispersal to maintain system-level biodiversity and productivity. I then extend this analysis to consider the effects of dispersal in a coupled social-ecological system where people derive benefits from species. Finally, I estimate an empirical model of the foot and mouth disease risks of trade. By combining outbreak and trade data I estimate the disease risks associated with the international trade in live animals while controlling for the biosecurity measures in place in importing countries and the presence of wild reservoirs. I find that the risks associated with the spread and dispersal of species may be positive or negative, but that this relationship depends on the ecological and economic components of the system and the interactions between them.
ContributorsShanafelt, David William (Author) / Perrings, Charles (Thesis advisor) / Fenichel, Eli (Committee member) / Richards, Timorthy (Committee member) / Janssen, Marco (Committee member) / Collins, James (Committee member) / Arizona State University (Publisher)
Created2016
171572-Thumbnail Image.png
Description
Variation in living systems and how it cascades across organizational levels is central to biology. To understand the constraints and amplifications of variation in collective systems, I mathematically study how group-level differences emerge from individual variation in eusocial-insect colonies, which are inherently diverse and easily observable individually and collectively. Considering

Variation in living systems and how it cascades across organizational levels is central to biology. To understand the constraints and amplifications of variation in collective systems, I mathematically study how group-level differences emerge from individual variation in eusocial-insect colonies, which are inherently diverse and easily observable individually and collectively. Considering collective processes in three species where increasing degrees of heterogeneity are relevant, I address how individual variation scales to colony-level variation and to what degree it is adaptive. In Chapter 2, I introduce a Markov-chain decision model for stochastic individual quorum-based recruitment decisions of rock-ant workers during house hunting, and how they determine collective speed--accuracy balance. Differences in the average threshold-dependent response characteristics of workers between colonies cause collective differences in decision-making. Moreover, noisy behavior may prevent drastic collective cascading into poor nests. In Chapter 3, I develop an ordinary differential equation (ODE) model to study how cognitive diversity among honey-bee foragers influences collective attention allocation between novel and familiar resources. Results provide a mechanistic basis for changes in foraging activity and preference with group composition. Moreover, sensitivity analysis reveals that the main individual driver for foraging allocation shifts from recruitment (communication) to persistence (independent effort) as colony composition changes. This might favor specific degrees of heterogeneity that best amplify communication in wild colonies. Lastly, in Chapter 4, I consider diversity in size, age, and task for nest defense in stingless bees. To better understand how these dimensions of diversity interact to balance defensive demands with other colony needs, I study their effect on colony size and task allocation through a demographic Filippov ODE model. Along each dimension, variation is beneficial in a certain range, outside of which colony adaptation and survival are compromised. This work elucidates how variation in collective properties emerges from nonlinear interactions between varying components in eusocial insects, but it can be generalized to other biological systems with similar fundamental characteristics but less empirical tractability. Moreover, it has the potential of inspiring algorithms that capitalize on heterogeneity in engineered systems where simple components with limited information and no central control must solve complex tasks.
ContributorsNavas Zuloaga, Maria Gabriela (Author) / Kang, Yun (Thesis advisor) / Smith, Brian H (Thesis advisor) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2022
161789-Thumbnail Image.png
Description
The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2.

The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2. Decomposability of the collective colony-level response into individual responses; and 3. Mechanisms to integrate the colony- and individual-level responses. In the first part of my dissertation, I explore coordinated collective responses of colonies in during the alarm response to an alarmed nestmate (chapter 2&3). I develop a machine-learning approach to quantitatively estimate the collective and individual alarm response (chapter 2). Using this methodology, I demonstrate that colony alarm responses to the introduction of alarmed nestmates can be decomposed into immediately cascading, followed by variable dampening processes. Each of those processes are found to be modulated by variation in individual alarm responsiveness, as measured by alarm response threshold and persistence of alarm behavior. This variation is modulated in turn by environmental context, in particular with task-related social context (chapter 3). In the second part of my dissertation, I examine the mechanisms responsible for colonial changes in metabolic rate during ontogeny. Prior studies have found that larger ant colonies (as for larger organisms) have lower mass-specific metabolic rates, but the mechanisms remain unclear. In a 3.5-year study on 25 colonies, metabolic rates of colonies and colony components were measured during ontogeny (chapter 4). The scaling of metabolic rate during ontogeny was fit better by segmented regression or quadratic regression models than simple linear regression models, showing that colonies do not follow a universal power-law of metabolism during the ontogenetic development. Furthermore, I showed that the scaling of colonial metabolic rates can be primarily explained by changes in the ratio of brood to adult workers, which nonlinearly affects colonial metabolic rates. At high ratios of brood to workers, colony metabolic rates are low because the metabolic rate of larvae and pupae are much lower than adult workers. However, the high colony metabolic rates were observed in colonies with moderate brood: adult ratios, because higher ratios cause adult workers to be more active and have higher metabolic rates, presumably due to the extra work required to feed more brood.
ContributorsGuo, Xiaohui (Author) / Fewell, Jennifer H (Thesis advisor) / Kang, Yun (Thesis advisor) / Harrison, Jon F (Committee member) / Liebig, Juergen (Committee member) / Pratt, Stephen C (Committee member) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2021
171961-Thumbnail Image.png
Description
Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously.

Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously. Thus, one should expect poorer regulation in superorganisms than unitary organisms.Here, I investigate aspects of regulation in collective foraging behaviors that involve both slow and rapid feedback processes. In Chapter 2, I examine a tightly coupled system with near-instantaneous signaling: teams of weaver ants cooperating to transport massive prey items back to their nest. I discover that over an extreme range of scenarios—even up vertical surfaces—the efficiency per transporter remains constant. My results suggest that weaver ant colonies are maximizing their total intake rate by regulating the allocation of transporters among loads. This is an exception that “proves the rule;” the ant teams are recapitulating the physical integration of unitary organisms. Next, I focus on a process with greater informational constraints, with loose temporal and spatial integration. In Chapter 3, I measure the ability of solitarily foraging Ectatomma ruidum colonies to balance their collection of protein and carbohydrates given different nutritional environments. Previous research has found that ant species can precisely collect a near-constant ratio between these two macronutrients, but I discover these studies were using flawed statistical approaches. By developing a quantitative measure of regulatory effect size, I show that colonies of E. ruidum are relatively insensitive to small differences in food source nutritional content, contrary to previously published claims. In Chapter 4, I design an automated, micro-RFID ant tracking system to investigate how the foraging behavior of individuals integrates into colony-level nutrient collection. I discover that spatial fidelity to food resources, not individual specialization on particular nutrient types, best predicts individual forager behavior. These findings contradict previously published experiments that did not use rigorous quantitative measures of specialization and confounded the effects of task type and resource location.
ContributorsBurchill, Andrew Taylor (Author) / Pavlic, Theodore P (Thesis advisor) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Cease, Arianne (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022