This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

152152-Thumbnail Image.png
Description
The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I

The academic literature on science communication widely acknowledges a problem: science communication between experts and lay audiences is important, but it is not done well. General audience popular science books, however, carry a reputation for clear science communication and are understudied in the academic literature. For this doctoral dissertation, I utilize Sam Harris's The Moral Landscape, a general audience science book on the particularly thorny topic of neuroscientific approaches to morality, as a case-study to explore the possibility of using general audience science books as models for science communication more broadly. I conduct a literary analysis of the text that delimits the scope of its project, its intended audience, and the domains of science to be communicated. I also identify seven literary aspects of the text: three positive aspects that facilitate clarity and four negative aspects that interfere with lay public engagement. I conclude that The Moral Landscape relies on an assumed knowledge base and intuitions of its audience that cannot reasonably be expected of lay audiences; therefore, it cannot properly be construed as popular science communication. It nevertheless contains normative lessons for the broader science project, both in literary aspects to be salvaged and literary aspects and concepts to consciously be avoided and combated. I note that The Moral Landscape's failings can also be taken as an indication that typical descriptions of science communication offer under-detailed taxonomies of both audiences for science communication and the varieties of science communication aimed at those audiences. Future directions of study include rethinking appropriate target audiences for science literacy projects and developing a more discriminating taxonomy of both science communication and lay publics.
ContributorsJohnson, Nathan W (Author) / Robert, Jason S (Thesis advisor) / Creath, Richard (Committee member) / Martinez, Jacqueline (Committee member) / Sylvester, Edward (Committee member) / Lynch, John (Committee member) / Arizona State University (Publisher)
Created2013
152156-Thumbnail Image.png
Description
Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments

Once perceived as an unimportant occurrence in living organisms, cell degeneration was reconfigured as an important biological phenomenon in development, aging, health, and diseases in the twentieth century. This dissertation tells a twentieth-century history of scientific investigations on cell degeneration, including cell death and aging. By describing four central developments in cell degeneration research with the four major chapters, I trace the emergence of the degenerating cell as a scientific object, describe the generations of a variety of concepts, interpretations and usages associated with cell death and aging, and analyze the transforming influences of the rising cell degeneration research. Particularly, the four chapters show how the changing scientific practices about cellular life in embryology, cell culture, aging research, and molecular biology of Caenorhabditis elegans shaped the interpretations about cell degeneration in the twentieth-century as life-shaping, limit-setting, complex, yet regulated. These events created and consolidated important concepts in life sciences such as programmed cell death, the Hayflick limit, apoptosis, and death genes. These cases also transformed the material and epistemic practices about the end of cellular life subsequently and led to the formations of new research communities. The four cases together show the ways cell degeneration became a shared subject between molecular cell biology, developmental biology, gerontology, oncology, and pathology of degenerative diseases. These practices and perspectives created a special kind of interconnectivity between different fields and led to a level of interdisciplinarity within cell degeneration research by the early 1990s.
ContributorsJiang, Lijing (Author) / Maienschein, Jane (Thesis advisor) / Laubichler, Manfred (Thesis advisor) / Hurlbut, James (Committee member) / Creath, Richard (Committee member) / White, Michael (Committee member) / Arizona State University (Publisher)
Created2013
157018-Thumbnail Image.png
Description
Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade.

Body size plays a pervasive role in determining physiological and behavioral performance across animals. It is generally thought that smaller animals are limited in performance measures compared to larger animals; yet, the vast majority of animals on earth are small and evolutionary trends like miniaturization occur in every animal clade. Therefore, there must be some evolutionary advantages to being small and/or compensatory mechanisms that allow small animals to compete with larger species. In this dissertation I specifically explore the scaling of flight performance (flight metabolic rate, wing beat frequency, load-carrying capacity) and learning behaviors (visual differentiation visual Y-maze learning) across stingless bee species that vary by three orders of magnitude in body size. I also test whether eye morphology and calculated visual acuity match visual differentiation and learning abilities using honeybees and stingless bees. In order to determine what morphological and physiological factors contribute to scaling of these performance parameters I measure the scaling of head, thorax, and abdomen mass, wing size, brain size, and eye size. I find that small stingless bee species are not limited in visual learning compared to larger species, and even have some energetic advantages in flight. These insights are essential to understanding how small size evolved repeatedly in all animal clades and why it persists. Finally, I test flight performance across stingless bee species while varying temperature in accordance with thermal changes that are predicted with climate change. I find that thermal performance curves varied greatly among species, that smaller species conform closely to air temperature, and that larger bees may be better equipped to cope with rising temperatures due to more frequent exposure to high temperatures. This information may help us predict whether small or large species might fare better in future thermal climate conditions, and which body-size related traits might be expected to evolve.
ContributorsDuell, Meghan (Author) / Harrison, Jon F. (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Rutowski, Ronald (Committee member) / Wcislo, William (Committee member) / Conrad, Cheryl (Committee member) / Arizona State University (Publisher)
Created2018
154832-Thumbnail Image.png
Description
Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a

Systems biology studies complex biological systems. It is an interdisciplinary field, with biologists working with non-biologists such as computer scientists, engineers, chemists, and mathematicians to address research problems applying systems’ perspectives. How these different researchers and their disciplines differently contributed to the advancement of this field over time is a question worth examining. Did systems biology become a systems-oriented science or a biology-oriented science from 1992 to 2013?

This project utilized computational tools to analyze large data sets and interpreted the results from historical and philosophical perspectives. Tools deployed were derived from scientometrics, corpus linguistics, text-based analysis, network analysis, and GIS analysis to analyze more than 9000 articles (metadata and text) on systems biology. The application of these tools to a HPS project represents a novel approach.

The dissertation shows that systems biology has transitioned from a more mathematical, computational, and engineering-oriented discipline focusing on modeling to a more biology-oriented discipline that uses modeling as a means to address real biological problems. Also, the results show that bioengineering and medical research has increased within systems biology. This is reflected in the increase of the centrality of biology-related concepts such as cancer, over time. The dissertation also compares the development of systems biology in China with some other parts of the world, and reveals regional differences, such as a unique trajectory of systems biology in China related to a focus on traditional Chinese medicine.

This dissertation adds to the historiography of modern biology where few studies have focused on systems biology compared with the history of molecular biology and evolutionary biology.
ContributorsZou, Yawen (Author) / Laubichler, Manfred (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Creath, Richard (Committee member) / Ellison, Karin (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2016
155317-Thumbnail Image.png
Description
Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor

Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor can vary, understanding alternative signaling pathways, which affect muscle contraction, could provide additional treatment options in stopping premature labor. The uterus is composed of smooth muscle, which is innervated, with a plexus of nerves that cover the muscle fibers. Smooth muscle can be stimulated or modulated by many sources such as neurotransmitters [i.e. dopamine], hormones [i.e. estrogen], peptides [i.e. oxytocin] and amines. This study focuses on the biogenic monoamine tyramine, which is produced in the tyrosine catecholamine biosynthesis pathway. Tyramine is known to be associated with peripheral vasoconstriction, increased cardiac output, increased respiration, elevated blood glucose and the release of norepinephrine. This research has found tyramine, and its specific receptor TAAR1, to be localized within mouse uterus and that this monoamine can induce uterine contractions at levels similar to oxytocin.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2017
151450-Thumbnail Image.png
Description
Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize

Sensory gating is a process by which the nervous system preferentially admits stimuli that are important for the organism while filtering out those that may be meaningless. An optimal sensory gate cannot be static or inflexible, but rather plastic and informed by past experiences. Learning enables sensory gates to recognize stimuli that are emotionally salient and potentially predictive of positive or negative outcomes essential to survival. Olfaction is the only sensory modality in mammals where sensory inputs bypass conventional thalamic gating before entering higher emotional or cognitive brain regions. Thus, olfactory bulb circuits may have a heavier burden of sensory gating compared to other primary sensory circuits. How do the primary synapses in an olfactory system "learn"' in order to optimally gate or filter sensory stimuli? I hypothesize that centrifugal neuromodulator serotonin serves as a signaling mechanism by which primary olfactory circuits can experience learning informed sensory gating. To test my hypothesis, I conditioned genetically-modified mice using reward or fear olfactory-cued learning paradigms and used pharmacological, electrophysiological, immunohistochemical, and optical imaging approaches to assay changes in serotonin signaling or functional changes in primary olfactory circuits. My results indicate serotonin is a key mediator in the acquisition of olfactory fear memories through the activation of its type 2A receptors in the olfactory bulb. Functionally within the first synaptic relay of olfactory glomeruli, serotonin type 2A receptor activation decreases excitatory glutamatergic drive of olfactory sensory neurons through both presynaptic and postsynaptic mechanisms. I propose that serotonergic signaling decreases excitatory drive, thereby disconnecting olfactory sensory neurons from odor responses once information is learned and its behavioral significance is consolidated. I found that learning induced chronic changes in the density of serotonin fibers and receptors, which persisted in glomeruli encoding the conditioning odor. Such persistent changes could represent a sensory gate stabilized by memory. I hypothesize this ensures that the glomerulus encoding meaningful odors are much more sensitive to future serotonin signaling as such arousal cues arrive from centrifugal pathways originating in the dorsal raphe nucleus. The results advocate that a simple associative memory trace can be formed at primary sensory synapses to facilitate optimal sensory gating in mammalian olfaction.
ContributorsLi, Monica (Author) / Tyler, William J (Thesis advisor) / Smith, Brian H. (Thesis advisor) / Duch, Carsten (Committee member) / Neisewander, Janet (Committee member) / Vu, Eric (Committee member) / Arizona State University (Publisher)
Created2012