This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

151939-Thumbnail Image.png
Description
Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies).

Random peptide microarrays are a powerful tool for both the treatment and diagnostics of infectious diseases. On the treatment side, selected random peptides on the microarray have either binding or lytic potency against certain pathogens cells, thus they can be synthesized into new antimicrobial agents, denoted as synbodies (synthetic antibodies). On the diagnostic side, serum containing specific infection-related antibodies create unique and distinct "pathogen-immunosignatures" on the random peptide microarray distinct from the healthy control serum, and this different mode of binding can be used as a more precise measurement than traditional ELISA tests. My thesis project is separated into these two parts: the first part falls into the treatment side and the second one focuses on the diagnostic side. My first chapter shows that a substitution amino acid peptide library helps to improve the activity of a recently reported synthetic antimicrobial peptide selected by the random peptide microarray. By substituting one or two amino acids of the original lead peptide, the new substitutes show changed hemolytic effects against mouse red blood cells and changed potency against two pathogens: Staphylococcus aureus and Pseudomonas aeruginosa. Two new substitutes are then combined together to form the synbody, which shows a significantly antimicrobial potency against Staphylococcus aureus (<0.5uM). In the second chapter, I explore the possibility of using the 10K Ver.2 random peptide microarray to monitor the humoral immune response of dengue. Over 2.5 billion people (40% of the world's population) live in dengue transmitting areas. However, currently there is no efficient dengue treatment or vaccine. Here, with limited dengue patient serum samples, we show that the immunosignature has the potential to not only distinguish the dengue infection from non-infected people, but also the primary dengue infection from the secondary dengue infections, dengue infection from West Nile Virus (WNV) infection, and even between different dengue serotypes. By further bioinformatic analysis, we demonstrate that the significant peptides selected to distinguish dengue infected and normal samples may indicate the epitopes responsible for the immune response.
ContributorsWang, Xiao (Author) / Johnston, Stephen Albert (Thesis advisor) / Blattman, Joseph (Committee member) / Arntzen, Charles (Committee member) / Arizona State University (Publisher)
Created2013
151292-Thumbnail Image.png
Description
In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be

In somatic cells, the mitotic spindle apparatus is centrosomal and several isoforms of Protein Kinase C (PKC) have been associated with the mitotic spindle, but their role in stabilizing the mitotic spindle is unclear. Other protein kinases such as, Glycogen Synthase Kinase 3â (GSK3â) also have been shown to be associated with the mitotic spindle. In the study in chapter 2, we show the enrichment of active (phosphorylated) PKCæ at the centrosomal region of the spindle apparatus in metaphase stage of 3T3 cells. In order to understand whether the two kinases, PKC and GSK3â are associated with the mitotic spindle, first, the co-localization and close molecular proximity of PKC isoforms with GSK3â was studied in metaphase cells. Second, the involvement of inactive GSK3â in maintaining an intact mitotic spindle was shown. Third, this study showed that addition of a phospho-PKCæ specific inhibitor to cells can disrupt the mitotic spindle microtubules. The mitotic spindle at metaphase in mouse fibroblasts appears to be maintained by PKCæ acting through GSK3â. The MAPK pathway has been implicated in various functions related to cell cycle regulation. MAPKK (MEK) is part of this pathway and the extracellular regulated kinase (ERK) is its known downstream target. GSK3â and PKCæ also have been implicated in cell cycle regulation. In the study in chapter 3, we tested the effects of inhibiting MEK on the activities of ERK, GSK3â, PKCæ, and á-tubulin. Results from this study indicate that inhibition of MEK did not inhibit GSK3â and PKCæ enrichment at the centrosomes. However, the mitotic spindle showed a reduction in the pixel intensity of microtubules and also a reduction in the number of cells in each of the M-phase stages. A peptide activation inhibitor of ERK was also used. Our results indicated a decrease in mitotic spindle microtubules and an absence of cells in most of the M-phase stages. GSK3â and PKCæ enrichment were however not inhibited at the centrosomes. Taken together, the kinases GSK3â and PKCæ may not function as a part of the MAPK pathway to regulate the mitotic spindle.
ContributorsChakravadhanula, Madhavi (Author) / Capco, David G. (Thesis advisor) / Chandler, Douglas (Committee member) / Clark-Curtiss, Josephine (Committee member) / Newfeld, Stuart (Committee member) / Arizona State University (Publisher)
Created2012
152911-Thumbnail Image.png
Description
Proper cell growth and differentiation requires the integration of multiple signaling pathways that are maintained by various post-translational modifications. Many proteins in signal transduction pathways are conserved between humans and model organisms. My dissertation characterizes four previously unknown manners of regulation in the Drosophila Decapentaplegic (Dpp) pathway, a pathway within

Proper cell growth and differentiation requires the integration of multiple signaling pathways that are maintained by various post-translational modifications. Many proteins in signal transduction pathways are conserved between humans and model organisms. My dissertation characterizes four previously unknown manners of regulation in the Drosophila Decapentaplegic (Dpp) pathway, a pathway within TGF-beta family. First, I present data that the Dpp signal transducer, Mothers Against Dpp (Mad), is phosphorylated by Zeste-white 3 (Zw3), a kinase involved in the Wingless pathway. This phosphorylation event occurs independently of canonical phosphorylation of Mad by the Dpp receptor. Using ectopic expression of different alleles of Mad, I show that Zw3 phosphorylation of Mad occurs during the cell cycle in pro-neuronal cells and the loss of phosphorylation of Mad by Zw3 results in ectopic neuronal cells. Thus, Mad phosphorylation by Zw3 is necessary for cell cycle control in pro-neuronal cells. Second, I have shown that the regulator dSno, which has previously been shown to be a TGF-beta antagonist and agonist, is also a Wingless pathway antagonist. Loss of function flip-out clones and ectopic expression of dSno both resulted in changes of Wingless signaling. Further analysis revealed that dSno acts at or below the level of Armadillo (Arm) to inhibit target gene expression. Third, I have demonstrated that the protein Bonus, which is known to be involved in chromatin modification, is required in dorsal-ventral patterning. Further experiments discovered that the chromatin modifier is not only a necessary Dpp agonist, but it is also necessary for nuclear localization of Dorsal during Toll signaling. Last, I showed that longitudinal lacking-like (lola-like) is also required in dorsal-ventral patterning. The loss of maternally expressed lola-like prevents dpp transcription. This shows that lola-like is integral in the Dpp pathway. The study of these four proteins integrates different signaling pathways, demonstrating that the process of development is a web of connections rather than a linear pathway.
ContributorsQuijano, Janine C (Author) / Newfeld, Stuart J (Thesis advisor) / Goldstein, Elliott (Committee member) / Chandler, Douglas (Committee member) / Capco, David (Committee member) / Arizona State University (Publisher)
Created2014
153112-Thumbnail Image.png
Description
Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters

Engineered nanoparticles (NP; 10-9 m) have found use in a variety of consumer goods and medical devices because of the unique changes in material properties that occur when synthesized on the nanoscale. Although many definitions for nanoparticle exist, from the perspective of size, nanoparticle is defined as particles with diameters less than 100 nm in any external dimension. Examples of their use include titanium dioxide added as a pigment in products intended to be ingested by humans, silicon dioxide NPs are used in foods as an anticaking agent, and gold or iron oxide NPs can be used as vectors for drug delivery or contrast agents for specialized medical imaging. Although the intended use of these NPs is often to improve human health, it has come to the attention of investigators that NPs can have unintended or even detrimental effects on the organism. This work describes one such unintended effect of NP exposure from the perspective of exposure via the oral route. First, this Dissertation will explain an event referred to as brush border disruption that occurred after nanoparticles interacted with an in vitro model of the human intestinal epithelium. Second, this Dissertation will identify and characterize several consumer goods that were shown to contain titanium dioxide that are intended to be ingested. Third, this Dissertation shows that sedimentation due to gravity does not artifactually result in disruption of brush borders as a consequence of exposure to food grade titanium dioxide in vitro. Finally, this Dissertation will demonstrate that iron oxide nanoparticles elicited similar effects after exposure to an in vitro brush border expressing model of the human placenta. Together, these data suggest that brush border disruption is not an artifact of the material/cell culture model, but instead represents a bona fide biological response as a result of exposure to nanomaterial.
ContributorsFaust, James J (Author) / Capco, David G. (Thesis advisor) / Ugarova, Tatiana (Committee member) / Chandler, Douglas (Committee member) / Baluch, Page (Committee member) / Herman, Richard (Committee member) / Arizona State University (Publisher)
Created2014
151137-Thumbnail Image.png
Description
Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of

Though for most of the twentieth century, dogma held that the adult brain was post-mitotic, it is now known that adult neurogenesis is widespread among vertebrates, from fish, amphibians, reptiles and birds to mammals including humans. Seasonal changes in adult neurogenesis are well characterized in the song control system of song birds, and have been found in seasonally breeding mammals as well. In contrast to more derived vertebrates, such as mammals, where adult neurogenesis is restricted primarily to the olfactory bulb and the dentate gyrus of the hippocampus, neurogenesis is widespread along the ventricles of adult amphibians. I hypothesized that seasonal changes in adult amphibian brain cell proliferation and survival are a potential regulator of reproductive neuroendocrine function. Adult, male American bullfrogs (Rana catesbeiana; aka Lithobates catesbeianus), were maintained in captivity for up to a year under season-appropriate photoperiod. Analysis of hormone levels indicated seasonal changes in plasma testosterone concentration consistent with field studies. Using the thymidine analogue 5-bromo-2-deoxyuridine (BrdU) as a marker for newly generated cells, two differentially regulated aspects of brain cell neogenesis were tracked; that is, proliferation and survival. Seasonal differences were found in BrdU labeling in several brain areas, including the olfactory bulb, medial pallium, nucleus accumbens and the infundibular hypothalamus. Clear seasonal differences were also found in the pars distalis region of the pituitary gland, an important component of neuroendocrine pathways. BrdU labeling was also examined in relation to two neuropeptides important for amphibian reproduction: arginine vasotocin and gonadotropin releasing hormone. No cells co-localized with BrdU and either neuropeptide, but new born cells were found in close proximity to neuropeptide-containing neurons. These data suggest that seasonal differences in brain and pituitary gland cell neogenesis are a potential neuroendocrine regulatory mechanism.
ContributorsMumaw, Luke (Author) / Orchinik, Miles (Thesis advisor) / Deviche, Pierre (Committee member) / Chandler, Douglas (Committee member) / Arizona State University (Publisher)
Created2012
153587-Thumbnail Image.png
Description
The distinguishing feature of the filamentous fungi is the hyphae - tube-like microscopic cells that exhibit polarized growth via apical extension and allow the fungus to interact with its environment. Fungi elongate at the hyphal apex, through the localized construction of new plasma membrane and cell wall through the

The distinguishing feature of the filamentous fungi is the hyphae - tube-like microscopic cells that exhibit polarized growth via apical extension and allow the fungus to interact with its environment. Fungi elongate at the hyphal apex, through the localized construction of new plasma membrane and cell wall through the exocytosis of secretory vesicles. One population of these vesicles have been identified as chitosomes, containing chitin synthase isoenzymes, which are responsible for the polymerization of N-acetylglucosamine from UDP N-acetylglucosamine into chitin, the primary fibrillar component of the fungal cell wall. The chitosomes, in addition to other vesicles, can be observed aggregating in the hyphal tip in most filamentous fungi. In the Ascomycota and Basidiomycota, this collection of vesicles exhibits discrete organization and has been termed a Spitzenkörper. Although accumulations of vesicles can be observed in the hyphal tip of many growing filamentous fungi, some debate continues as to what precisely defines a Spitzenkörper. This study reports the details of three separate projects: first, to document the effects of deleting a single chitin synthase, CHS-1 and CHS-6 in Neurospora crassa with regards to hyphal ultrastructure, cytoplasmic organization, and growth in comparison to the wild-type. Given the importance of chitin synthesis in fungal cell growth, deletion of a critical chitin synthase presumably impacts cell wall structure, fungal growth and cytoplasmic organization. Second, an examination of the ultrastructure of four zygomycetous fungi - Coemansia reversa, Mortierella verticillata, Mucor indicus, and Gilbertella persicaria has been conducted. Utilization of cryofixation and freeze-substitution techniques for electron microscopy has produced improved preservation of cytoplasmic ultrastructure, particularly at the hyphal apex, allowing detailed analysis of vesicle size, contents, and organization. Lastly, hyphal tip organization was reviewed in a broad range of fungi. Previous studies had either focused on a few select fungi or representative groups. Vesicle organization, composition and size do appear to vary among the classes of fungi, but some trends, like the vesicle crescent in the zygomycetous fungi have been documented.
ContributorsFisher, Karen Elizabeth (Author) / Roberson, Robert W. (Thesis advisor) / Chandler, Douglas (Committee member) / Riquelme, Meritxell (Committee member) / Stutz, Jeam (Committee member) / Wojciechowski, Martin (Committee member) / Arizona State University (Publisher)
Created2015
155857-Thumbnail Image.png
Description
Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex

Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex contextual connections of gene

regulatory networks in natural settings often impede the experimental establishment of

the function and dynamics of each specific gene network.

In this work, diverse synthetic gene networks are rationally designed and

constructed using well-characterized biological components to approach the cell fate

determination and state transition dynamics in multistable systems. Results show that

unimodality and bimodality and trimodality can be achieved through manipulation of the

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to

communicate with each other.

Moreover, a synthetic quadrastable circuit is also built and experimentally

demonstrated to have four stable steady states. Experiments, guided by mathematical

modeling predictions, reveal that sequential inductions generate distinct cell fates by

changing the landscape in sequence and hence navigating cells to different final states.

Circuit function depends on the specific protein expression levels in the circuit.

We then establish a protein expression predictor taking into account adjacent

transcriptional regions’ features through construction of ~120 synthetic gene circuits

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks.

These combined results illustrate applications of synthetic gene networks to

understand the cell fate determination and state transition dynamics in multistable

systems. A protein-expression predictor is also developed to evaluate and tune circuit

dynamics.
ContributorsWu, Fuqing (Author) / Wang, Xiao (Thesis advisor) / Haynes, Karmella (Committee member) / Marshall, Pamela (Committee member) / Nielsen, David (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
157920-Thumbnail Image.png
Description
Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones,

Fusion proteins that specifically interact with biochemical marks on chromosomes represent a new class of synthetic transcriptional regulators that decode cell state information rather than deoxyribose nucleic acid (DNA) sequences. In multicellular organisms, information relevant to cell state, tissue identity, and oncogenesis is often encoded as biochemical modifications of histones, which are bound to DNA in eukaryotic nuclei and regulate gene expression states. In 2011, Haynes et al. showed that a synthetic regulator called the Polycomb chromatin Transcription Factor (PcTF), a fusion protein that binds methylated histones, reactivated an artificially-silenced luciferase reporter gene. These synthetic transcription activators are derived from the polycomb repressive complex (PRC) and associate with the epigenetic silencing mark H3K27me3 to reactivate the expression of silenced genes. It is demonstrated here that the duration of epigenetic silencing does not perturb reactivation via PcTF fusion proteins. After 96 hours PcTF shows the strongest reactivation activity. A variant called Pc2TF, which has roughly double the affinity for H3K27me3 in vitro, reactivated the silenced luciferase gene by at least 2-fold in living cells.
ContributorsVargas, Daniel A. (Author) / Haynes, Karmella (Thesis advisor) / Wang, Xiao (Committee member) / Mills, Jeremy (Committee member) / Arizona State University (Publisher)
Created2019
168792-Thumbnail Image.png
Description
A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain

A notable challenge when assembling synthetic gene circuits is that modularity often fails to function as intended. A crucial underlying reason for this modularity failure is the existence of competition for shared and limited gene expression resources. By designing a synthetic cascading bistable switches (Syn-CBS) circuit in a single strain with two coupled self-activation modules to achieve successive cell fate transitions, nonlinear resource competition within synthetic gene circuits is unveiled. However, in vivo it can be seen that the transition path was redirected with the activation of one switch always prevailing over that of the other, contradictory to coactivation theoretically expected. This behavior is a result of resource competition between genes and follows a ‘winner-takes-all’ rule, where the winner is determined by the relative connection strength between the two modules. Despite investigation demonstrating that resource competition between gene modules can significantly alter circuit deterministic behaviors, how resource competition contributes to gene expression noise and how this noise can be controlled is still an open issue of fundamental importance in systems biology and biological physics. By utilizing a two-gene circuit, the effects of resource competition on protein expression noise levels can be closely studied. A surprising double-edged role is discovered: the competition for these resources decreases noise while the constraint on resource availability adds its own term of noise into the system, denoted “resource competitive” noise. Noise reduction effects are then studied using orthogonal resources. Results indicate that orthogonal resources are a good strategy for eliminating the contribution of resource competition to gene expression noise. Noise propagation through a cascading circuit has been considered without resource competition. It has been noted that the noise from upstream genes can be transmitted downstream. However, resource competition’s effects on this cascading noise have yet to be studied. When studied, it is found that resource competition can induce stochastic state switching and perturb noise propagation. Orthogonal resources can remove some of the resource competitive behavior and allow for a system with less noise.
ContributorsGoetz, Hanah Elizabeth (Author) / Tian, Xiaojun (Thesis advisor) / Wang, Xiao (Committee member) / Lai, Ying-Cheng (Committee member) / Arizona State University (Publisher)
Created2022