This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

156041-Thumbnail Image.png
Description
What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their

What makes living systems different than non-living ones? Unfortunately this question is impossible to answer, at least currently. Instead, we must face computationally tangible questions based on our current understanding of physics, computation, information, and biology. Yet we have few insights into how living systems might quantifiably differ from their non-living counterparts, as in a mathematical foundation to explain away our observations of biological evolution, emergence, innovation, and organization. The development of a theory of living systems, if at all possible, demands a mathematical understanding of how data generated by complex biological systems changes over time. In addition, this theory ought to be broad enough as to not be constrained to an Earth-based biochemistry. In this dissertation, the philosophy of studying living systems from the perspective of traditional physics is first explored as a motivating discussion for subsequent research. Traditionally, we have often thought of the physical world from a bottom-up approach: things happening on a smaller scale aggregate into things happening on a larger scale. In addition, the laws of physics are generally considered static over time. Research suggests that biological evolution may follow dynamic laws that (at least in part) change as a function of the state of the system. Of the three featured research projects, cellular automata (CA) are used as a model to study certain aspects of living systems in two of them. These aspects include self-reference, open-ended evolution, local physical universality, subjectivity, and information processing. Open-ended evolution and local physical universality are attributed to the vast amount of innovation observed throughout biological evolution. Biological systems may distinguish themselves in terms of information processing and storage, not outside the theory of computation. The final research project concretely explores real-world phenomenon by means of mapping dominance hierarchies in the evolution of video game strategies. Though the main question of how life differs from non-life remains unanswered, the mechanisms behind open-ended evolution and physical universality are revealed.
ContributorsAdams, Alyssa M (Author) / Walker, Sara I (Thesis advisor) / Davies, Paul CW (Committee member) / Pavlic, Theodore P (Committee member) / Chamberlin, Ralph V (Committee member) / Arizona State University (Publisher)
Created2017
156042-Thumbnail Image.png
Description
The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial

The portability of genetic tools from one organism to another is a cornerstone of synthetic biology. The shared biological language of DNA-to-RNA-to-protein allows for expression of polypeptide chains in phylogenetically distant organisms with little modification. The tools and contexts are diverse, ranging from catalytic RNAs in cell-free systems to bacterial proteins expressed in human cell lines, yet they exhibit an organizing principle: that genes and proteins may be treated as modular units that can be moved from their native organism to a novel one. However, protein behavior is always unpredictable; drop-in functionality is not guaranteed.

My work characterizes how two different classes of tools behave in new contexts and explores methods to improve their functionality: 1. CRISPR/Cas9 in human cells and 2. quorum sensing networks in Escherichia coli.

1. The genome-editing tool CRISPR/Cas9 has facilitated easily targeted, effective, high throughput genome editing. However, Cas9 is a bacterially derived protein and its behavior in the complex microenvironment of the eukaryotic nucleus is not well understood. Using transgenic human cell lines, I found that gene-silencing heterochromatin impacts Cas9’s ability to bind and cut DNA in a site-specific manner and I investigated ways to improve CRISPR/Cas9 function in heterochromatin.

2. Bacteria use quorum sensing to monitor population density and regulate group behaviors such as virulence, motility, and biofilm formation. Homoserine lactone (HSL) quorum sensing networks are of particular interest to synthetic biologists because they can function as “wires” to connect multiple genetic circuits. However, only four of these networks have been widely implemented in engineered systems. I selected ten quorum sensing networks based on their HSL production profiles and confirmed their functionality in E. coli, significantly expanding the quorum sensing toolset available to synthetic biologists.
ContributorsDaer, René (Author) / Haynes, Karmella (Thesis advisor) / Brafman, David (Committee member) / Nielsen, David (Committee member) / Kiani, Samira (Committee member) / Arizona State University (Publisher)
Created2017
155857-Thumbnail Image.png
Description
Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex

Synthetic gene networks have evolved from simple proof-of-concept circuits to

complex therapy-oriented networks over the past fifteen years. This advancement has

greatly facilitated expansion of the emerging field of synthetic biology. Multistability is a

mechanism that cells use to achieve a discrete number of mutually exclusive states in

response to environmental inputs. However, complex contextual connections of gene

regulatory networks in natural settings often impede the experimental establishment of

the function and dynamics of each specific gene network.

In this work, diverse synthetic gene networks are rationally designed and

constructed using well-characterized biological components to approach the cell fate

determination and state transition dynamics in multistable systems. Results show that

unimodality and bimodality and trimodality can be achieved through manipulation of the

signal and promoter crosstalk in quorum-sensing systems, which enables bacterial cells to

communicate with each other.

Moreover, a synthetic quadrastable circuit is also built and experimentally

demonstrated to have four stable steady states. Experiments, guided by mathematical

modeling predictions, reveal that sequential inductions generate distinct cell fates by

changing the landscape in sequence and hence navigating cells to different final states.

Circuit function depends on the specific protein expression levels in the circuit.

We then establish a protein expression predictor taking into account adjacent

transcriptional regions’ features through construction of ~120 synthetic gene circuits

(operons) in Escherichia coli. The predictor’s utility is further demonstrated in evaluating genes’ relative expression levels in construction of logic gates and tuning gene expressions and nonlinear dynamics of bistable gene networks.

These combined results illustrate applications of synthetic gene networks to

understand the cell fate determination and state transition dynamics in multistable

systems. A protein-expression predictor is also developed to evaluate and tune circuit

dynamics.
ContributorsWu, Fuqing (Author) / Wang, Xiao (Thesis advisor) / Haynes, Karmella (Committee member) / Marshall, Pamela (Committee member) / Nielsen, David (Committee member) / Brafman, David (Committee member) / Arizona State University (Publisher)
Created2017
Description
Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of

Cardiovascular disease (CVD) remains the leading cause of mortality, resulting in 1 out of 4 deaths in the United States at the alarming rate of 1 death every 36 seconds, despite great efforts in ongoing research. In vitro research to study CVDs has had limited success, due to lack of biomimicry and structural complexity of 2D models. As such, there is a critical need to develop a 3D, biomimetic human cardiac tissue within precisely engineered in vitro platforms. This PhD dissertation involved development of an innovative anisotropic 3D human stem cell-derived cardiac tissue on-a-chip model (i.e., heart on-a-chip), with an enhanced maturation tissue state, as demonstrated through extensive biological assessments. To demonstrate the potential of the platform to study cardiac-specific diseases, the developed heart on-a-chip was used to model myocardial infarction (MI) due to exposure to hypoxia. The successful induction of MI on-a-chip (heart attack-on-a-chip) was evidenced through fibrotic tissue response, contractile dysregulation, and transcriptomic regulation of key pathways.This dissertation also described incorporation of CRISPR/Cas9 gene-editing to create a human induced pluripotent stem cell line (hiPSC) with a mutation in KCNH2, the gene implicated in Long QT Syndrome Type 2 (LQTS2). This novel stem cell line, combined with the developed heart on-a-chip technology, led to creation of a 3D human cardiac on-chip tissue model of LQTS2 disease.. Extensive mechanistic biological and electrophysiological characterizations were performed to elucidate the mechanism of R531W mutation in KCNH2, significantly adding to existing knowledge about LQTS2. In summary, this thesis described creation of a LQTS2 cardiac on-a-chip model, incorporated with gene-edited hiPSC-cardiomyocytes and hiPSC-cardiac fibroblasts, to study mechanisms of LQTS2. Overall, this dissertation provides broad impact for fundamental studies toward cardiac biological studies as well as drug screening applications. Specifically, the developed heart on-a-chip from this dissertation provides a unique alternative platform to animal testing and 2D studies that recapitulates the human myocardium, with capabilities to model critical CVDs to study disease mechanisms, and/or ultimately lead to development of future therapeutic strategies.
ContributorsVeldhuizen, Jaimeson (Author) / Nikkhah, Mehdi (Thesis advisor) / Brafman, David (Committee member) / Ebrahimkhani, Mo (Committee member) / Migrino, Raymond Q (Committee member) / Plaisier, Christopher (Committee member) / Arizona State University (Publisher)
Created2021
171572-Thumbnail Image.png
Description
Variation in living systems and how it cascades across organizational levels is central to biology. To understand the constraints and amplifications of variation in collective systems, I mathematically study how group-level differences emerge from individual variation in eusocial-insect colonies, which are inherently diverse and easily observable individually and collectively. Considering

Variation in living systems and how it cascades across organizational levels is central to biology. To understand the constraints and amplifications of variation in collective systems, I mathematically study how group-level differences emerge from individual variation in eusocial-insect colonies, which are inherently diverse and easily observable individually and collectively. Considering collective processes in three species where increasing degrees of heterogeneity are relevant, I address how individual variation scales to colony-level variation and to what degree it is adaptive. In Chapter 2, I introduce a Markov-chain decision model for stochastic individual quorum-based recruitment decisions of rock-ant workers during house hunting, and how they determine collective speed--accuracy balance. Differences in the average threshold-dependent response characteristics of workers between colonies cause collective differences in decision-making. Moreover, noisy behavior may prevent drastic collective cascading into poor nests. In Chapter 3, I develop an ordinary differential equation (ODE) model to study how cognitive diversity among honey-bee foragers influences collective attention allocation between novel and familiar resources. Results provide a mechanistic basis for changes in foraging activity and preference with group composition. Moreover, sensitivity analysis reveals that the main individual driver for foraging allocation shifts from recruitment (communication) to persistence (independent effort) as colony composition changes. This might favor specific degrees of heterogeneity that best amplify communication in wild colonies. Lastly, in Chapter 4, I consider diversity in size, age, and task for nest defense in stingless bees. To better understand how these dimensions of diversity interact to balance defensive demands with other colony needs, I study their effect on colony size and task allocation through a demographic Filippov ODE model. Along each dimension, variation is beneficial in a certain range, outside of which colony adaptation and survival are compromised. This work elucidates how variation in collective properties emerges from nonlinear interactions between varying components in eusocial insects, but it can be generalized to other biological systems with similar fundamental characteristics but less empirical tractability. Moreover, it has the potential of inspiring algorithms that capitalize on heterogeneity in engineered systems where simple components with limited information and no central control must solve complex tasks.
ContributorsNavas Zuloaga, Maria Gabriela (Author) / Kang, Yun (Thesis advisor) / Smith, Brian H (Thesis advisor) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2022
161789-Thumbnail Image.png
Description
The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2.

The flexibility and robustness of social insect colonies, when they cope with challenges as integrated units, raise many questions, such as how hundreds and thousands of individual local responses are coordinated without a central controlling process. Answering such questions requires: 1. Quantifiable collective responses of colonies under specific scenarios; 2. Decomposability of the collective colony-level response into individual responses; and 3. Mechanisms to integrate the colony- and individual-level responses. In the first part of my dissertation, I explore coordinated collective responses of colonies in during the alarm response to an alarmed nestmate (chapter 2&3). I develop a machine-learning approach to quantitatively estimate the collective and individual alarm response (chapter 2). Using this methodology, I demonstrate that colony alarm responses to the introduction of alarmed nestmates can be decomposed into immediately cascading, followed by variable dampening processes. Each of those processes are found to be modulated by variation in individual alarm responsiveness, as measured by alarm response threshold and persistence of alarm behavior. This variation is modulated in turn by environmental context, in particular with task-related social context (chapter 3). In the second part of my dissertation, I examine the mechanisms responsible for colonial changes in metabolic rate during ontogeny. Prior studies have found that larger ant colonies (as for larger organisms) have lower mass-specific metabolic rates, but the mechanisms remain unclear. In a 3.5-year study on 25 colonies, metabolic rates of colonies and colony components were measured during ontogeny (chapter 4). The scaling of metabolic rate during ontogeny was fit better by segmented regression or quadratic regression models than simple linear regression models, showing that colonies do not follow a universal power-law of metabolism during the ontogenetic development. Furthermore, I showed that the scaling of colonial metabolic rates can be primarily explained by changes in the ratio of brood to adult workers, which nonlinearly affects colonial metabolic rates. At high ratios of brood to workers, colony metabolic rates are low because the metabolic rate of larvae and pupae are much lower than adult workers. However, the high colony metabolic rates were observed in colonies with moderate brood: adult ratios, because higher ratios cause adult workers to be more active and have higher metabolic rates, presumably due to the extra work required to feed more brood.
ContributorsGuo, Xiaohui (Author) / Fewell, Jennifer H (Thesis advisor) / Kang, Yun (Thesis advisor) / Harrison, Jon F (Committee member) / Liebig, Juergen (Committee member) / Pratt, Stephen C (Committee member) / Pavlic, Theodore P (Committee member) / Arizona State University (Publisher)
Created2021
171961-Thumbnail Image.png
Description
Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously.

Eusocial insect colonies have often been imagined as “superorganisms” exhibiting tight homeostasis at the colony level. However, colonies lack the tight spatial and organizational integration that many multicellular, unitary organisms exhibit. Precise regulation requires rapid feedback, which is often not possible when nestmates are distributed across space, making decisions asynchronously. Thus, one should expect poorer regulation in superorganisms than unitary organisms.Here, I investigate aspects of regulation in collective foraging behaviors that involve both slow and rapid feedback processes. In Chapter 2, I examine a tightly coupled system with near-instantaneous signaling: teams of weaver ants cooperating to transport massive prey items back to their nest. I discover that over an extreme range of scenarios—even up vertical surfaces—the efficiency per transporter remains constant. My results suggest that weaver ant colonies are maximizing their total intake rate by regulating the allocation of transporters among loads. This is an exception that “proves the rule;” the ant teams are recapitulating the physical integration of unitary organisms. Next, I focus on a process with greater informational constraints, with loose temporal and spatial integration. In Chapter 3, I measure the ability of solitarily foraging Ectatomma ruidum colonies to balance their collection of protein and carbohydrates given different nutritional environments. Previous research has found that ant species can precisely collect a near-constant ratio between these two macronutrients, but I discover these studies were using flawed statistical approaches. By developing a quantitative measure of regulatory effect size, I show that colonies of E. ruidum are relatively insensitive to small differences in food source nutritional content, contrary to previously published claims. In Chapter 4, I design an automated, micro-RFID ant tracking system to investigate how the foraging behavior of individuals integrates into colony-level nutrient collection. I discover that spatial fidelity to food resources, not individual specialization on particular nutrient types, best predicts individual forager behavior. These findings contradict previously published experiments that did not use rigorous quantitative measures of specialization and confounded the effects of task type and resource location.
ContributorsBurchill, Andrew Taylor (Author) / Pavlic, Theodore P (Thesis advisor) / Pratt, Stephen C (Thesis advisor) / Hölldobler, Bert (Committee member) / Cease, Arianne (Committee member) / Berman, Spring (Committee member) / Arizona State University (Publisher)
Created2022