This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 6 of 6
Filtering by

Clear all filters

152797-Thumbnail Image.png
Description
There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices.

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.
ContributorsPuruhito, Emil (Author) / Sommerfeld, Milton (Thesis advisor) / Gintz, Jerry (Thesis advisor) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2014
153151-Thumbnail Image.png
Description
Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry

Microalgae represent a potential sustainable alternative for the enhancement and protection of agricultural crops. The dry biomass and cellular extracts of Scenedesmus dimorphus were applied as a biofertilizer, a foliar spray, and a seed primer to evaluate seed germination, plant growth, and crop yield of Roma tomato plants. The dry biomass was applied as a biofertilizer at 50 g and 100 g per plant, to evaluate its effects on plant development and crop yield. Biofertilizer treatments enhanced plant growth and led to greater crop (fruit) production. Timing of biofertilizer application proved to be of importance - earlier 50 g biofertilizer application resulted in greater plant growth. Scenedesmus dimorphus culture, growth medium, and different concentrations (1%, 5%, 10%, 25%, 50%, 75%, 100%) of aqueous cell extracts were used as seed primers to determine effects on germination. Seeds treated with Scenedesmus dimorphus culture and with extract concentrations higher than 50 % (0.75 g ml-1) triggered faster germination - 2 days earlier than the control group. Extract foliar sprays of 50 ml and 100 ml, were obtained and applied to tomato plants at various extract concentrations (10%, 25%, 50%, 75% and 100%). Plant height, flower development and number of branches were significantly enhanced with 50 % (7.5 g ml-1) extracts. Higher concentration sprays led to a decrease in growth. The extracts were further screened to assess potential antimicrobial activity against the bacterium Escherichia coli ATCC 25922, the fungi Candida albicans ATCC 90028 and Aspergillus brasiliensis ATCC 16404. No antimicrobial activity was observed from the microalga extracts on the selected microorganisms.
ContributorsGarcia-Gonzalez, Jesus (Author) / Sommerfeld, Milton (Thesis advisor) / Steele, Kelly (Committee member) / Henderson, Mark (Committee member) / Arizona State University (Publisher)
Created2014
151016-Thumbnail Image.png
Description
Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were

Human recreation on rangelands may negatively impact wildlife populations. Among those activities, off-road vehicle (ORV) recreation carries the potential for broad ecological consequences. A study was undertaken to assess the impacts of ORV on rodents in Arizona Uplands Sonoran Desert. Between the months of February and September 2010, rodents were trapped at 6 ORV and 6 non-ORV sites in Tonto National Forest, AZ. I hypothesized that rodent abundance and species richness are negatively affected by ORV use. Rodent abundances were estimated using capture-mark-recapture methodology. Species richness was not correlated with ORV use. Although abundance of Peromyscus eremicus and Neotoma albigula declined as ORV use increased, abundance of Dipodomys merriami increased. Abundance of Chaetodipus baileyi was not correlated with ORV use. Other factors measured were percent ground cover, percent shrub cover, and species-specific shrub cover percentages. Total shrub cover, Opuntia spp., and Parkinsonia microphylla each decreased as ORV use increased. Results suggest that ORV use negatively affects rodent habitats in Arizona Uplands Sonoran Desert, leading to declining abundance in some species. Management strategies should mitigate ORV related habitat destruction to protect vulnerable populations.
ContributorsReid, John Simon (Author) / Brady, Ward (Thesis advisor) / Miller, William (Committee member) / Bateman, Heather (Committee member) / Arizona State University (Publisher)
Created2012
157012-Thumbnail Image.png
Description
Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To

Human-inhabited or -disturbed areas pose many unique challenges for wildlife, including increased human exposure, novel challenges, such as finding food or nesting sites in novel structures, anthropogenic noises, and novel predators. Animals inhabiting these environments must adapt to such changes by learning to exploit new resources and avoid danger. To my knowledge no study has comprehensively assessed behavioral reactions of urban and rural populations to numerous novel environmental stimuli. I tested behavioral responses of urban, suburban, and rural house finches (Haemorhous mexicanus) to novel stimuli (e.g. objects, noises, food), to presentation of a native predator model (Accipiter striatus) and a human, and to two problem-solving challenges (escaping confinement and food-finding). Although I found few population-level differences in behavioral responses to novel objects, environment, and food, I found compelling differences in how finches from different sites responded to novel noise. When played a novel sound (whale call or ship horn), urban and suburban house finches approached their food source more quickly and spent more time on it than rural birds, and urban and suburban birds were more active during the whale-noise presentation. In addition, while there were no differences in response to the native predator, rural birds showed higher levels of stress behaviors when presented with a human. When I replicated this study in juveniles, I found that exposure to humans during development more accurately predicted behavioral differences than capture site. Finally, I found that urban birds were better at solving an escape problem, whereas rural birds were better at solving a food-finding challenge. These results indicate that not all anthropogenic changes affect animal populations equally and that determining the aversive natural-history conditions and challenges of taxa may help urban ecologists better understand the direction and degree to which animals respond to human-induced rapid environmental alterations.
ContributorsWeaver, Melinda (Author) / McGraw, Kevin J. (Thesis advisor) / Rutowski, Ronald (Committee member) / Pratt, Stephen (Committee member) / Bateman, Heather (Committee member) / Deviche, Pierre (Committee member) / Arizona State University (Publisher)
Created2018
149451-Thumbnail Image.png
Description
Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the

Phytoplankton comprise the base of the marine food web, and, along with heterotrophic protists, they are key players in the biological pump that transports carbon from the surface to the deep ocean. In the world's subtropical oligotrophic gyres, plankton communities exhibit strong seasonality. Winter storms vent deep water into the euphotic zone, triggering a surge in primary productivity in the form of a spring phytoplankton bloom. Although the hydrographic trends of this "boom and bust" cycle have been well studied for decades, community composition and its seasonal and annual variability remains an integral subject of research. It is hypothesized here that proportions of different phytoplankton and protistan taxa vary dramatically between seasons and years, and that picoplankton represent an important component of this community and contributor to carbon in the surface ocean. Monthly samples from the Bermuda Atlantic Time-series Study (BATS) site were analyzed by epifluorescence microscopy, which permits classification by morphology, size, and trophic type. Epifluorescence counts were supplemented with flow cytometric quantification of Synechococcus, Prochlorococcus, and autotrophic pico- and nanoeukaryotes. Results from this study indicate Synechococcus and Prochlorococcus, prymnesiophytes, and hetero- and mixotrophic nano- and dinoflagellates were the major players in the BATS region plankton community. Ciliates, cryptophytes, diatoms, unidentified phototrophs, and other taxa represented rarer groups. Both flow cytometry and epifluorescence microscopy revealed Synechococcus to be most prevalent during the spring bloom. Prymnesiophytes likewise displayed distinct seasonality, with the highest concentrations again being noted during the bloom. Heterotrophic nano- and dinoflagellates, however, were most common in fall and winter. Mixotrophic dinoflagellates, while less abundant than their heterotrophic counterparts, displayed similar seasonality. A key finding of this study was the interannual variability revealed between the two years. While most taxa were more abundant in the first year, prymnesiophytes experienced much greater abundance in the second year bloom. Analyses of integrated carbon revealed further stark contrasts between the two years, both in terms of total carbon and the contributions of different groups. Total integrated carbon varied widely in the first study year but displayed less fluctuation after June 2009, and values were noticeably reduced in the second year.
ContributorsHansen, Amy (Author) / Neuer, Susanne (Thesis advisor) / Krajmalnik-Brown, Rosa (Committee member) / Sommerfeld, Milton (Committee member) / Arizona State University (Publisher)
Created2010
171640-Thumbnail Image.png
Description
When most people think of Phoenix, Arizona, they think of sprawling cityscapesand hot desert mountains full of saguaros and other cacti. They rarely think of water and fish, and yet, the Arizona landscape is home to many lakes, ponds, rivers and streams, full of both native fish and sportfish, including in the

When most people think of Phoenix, Arizona, they think of sprawling cityscapesand hot desert mountains full of saguaros and other cacti. They rarely think of water and fish, and yet, the Arizona landscape is home to many lakes, ponds, rivers and streams, full of both native fish and sportfish, including in the urban areas. According to the report by DeSemple in 2006, between the years 2001 and 2006, the Rio Salado Environmental Restoration Project worked to revitalize the dry river bed that runs through Phoenix, that included the construction of two urban ponds, the Demonstration Pond and the Reservoir Pond. At the start of this study, it was unknown what vertebrate species inhabited these ponds, but it was known that these urban ponds have been used to dump unwanted aquatic pets. The bluegill Lepomis macrochirus was found to reside in both ponds, and as it is such an important sportfish species, it was chosen as the focal species for these studies, which took place over periods in March, May, July, and September of 2021. Single-season occupancy models were used to attempt to determine how L. macrochirus, use the microhabitats within the system, and a multi-season model was used to estimate their recruitment, and seasonal changes in occupancy. In addition, this study also attempts to understand the size structures of the L. macrochirus population in the Reservoir Pond and the population in the Demonstration Pond, and if that size structure varies from March to September. As the populations of these ponds are physically isolated from one another, statistical tests were also done to determine if the size structures of the two populations of L. macrochirus differ from one another and found that the two populations do indeed differ from one another, but only during two of the sampling periods.
ContributorsKeister, Emily Jan (Author) / Saul, Steven (Thesis advisor) / Bateman, Heather (Committee member) / Suzart de Albuquerque, Fabio (Committee member) / Arizona State University (Publisher)
Created2022