This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 7 of 7
Filtering by

Clear all filters

155317-Thumbnail Image.png
Description
Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor

Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor can vary, understanding alternative signaling pathways, which affect muscle contraction, could provide additional treatment options in stopping premature labor. The uterus is composed of smooth muscle, which is innervated, with a plexus of nerves that cover the muscle fibers. Smooth muscle can be stimulated or modulated by many sources such as neurotransmitters [i.e. dopamine], hormones [i.e. estrogen], peptides [i.e. oxytocin] and amines. This study focuses on the biogenic monoamine tyramine, which is produced in the tyrosine catecholamine biosynthesis pathway. Tyramine is known to be associated with peripheral vasoconstriction, increased cardiac output, increased respiration, elevated blood glucose and the release of norepinephrine. This research has found tyramine, and its specific receptor TAAR1, to be localized within mouse uterus and that this monoamine can induce uterine contractions at levels similar to oxytocin.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2017
187535-Thumbnail Image.png
Description
Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the

Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the complex molecular and cellular signals that regulate uterine activity during human pregnancy and labor. Even though preterm labor accounts for a large portion of perinatal mortality and morbidity, there still is not an effective therapeutic strategy for the treatment or prevention of preterm labor. This dissertation presents tyramine as an alternative modulator of uterine activity. In this dissertation the aims were as follows: 1) to investigate the localization of tyramine and trace amine associated receptor 1 (TAAR1) in the mouse uterine horn using immunohistochemistry as well as confirm the presence of tyramine in the uterine tissue using high performance liquid chromatography, 2) identify which TAAR 1-9 subtypes were present in the mouse uterine horn using RT-qPCR, 3) investigate ultrastructural differences in the mouse uterine horn following tyramine and dopamine treatment using transmission electron microscopy and 4) investigate pinopod ultrastructure as well as pinopod ultrastructural differences following tyramine and dopamine treatment. The research presented in this dissertation showed: 1) tyramine has very specific localization in the mouse endometrium, mainly in the uterine glands, TAAR1 is localized all throughout the perimetrium, myometrium and endometrium, and that tyramine was confirmed and quantified using HPLC, 2) TAAR 1- 9 genes are expressed in trace levels in the mouse uterine horn, 3) tyramine influences changes in endometrial ultrastructure, and 4) tyramine influences changes in pinopod ultrastructure. Ultimately these findings can help with identifying novel treatment options not only for spontaneous preterm labor contractions but also for other uterine related disorders.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Roberson, Robert (Thesis advisor) / Sweazea, Karen (Committee member) / Brent, Colin (Committee member) / Arizona State University (Publisher)
Created2023
158091-Thumbnail Image.png
Description
According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise is a potential intervention to prevent obesity-induced cardiovascular complications as exercise training has been shown to aid nitric oxide (NO)

According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise is a potential intervention to prevent obesity-induced cardiovascular complications as exercise training has been shown to aid nitric oxide (NO) production as well as preserving endothelial function in obese mice (Silva et al., 2016). A soil-derived organic mineral compound (OMC) has been shown to lower blood sugar in diabetic mice (Deneau et al., 2011). Prior research has shown that, while OMC did not prevent high fat diet (HFD)-induced increases in body fat in male Sprague-Dawley rats, it was effective at preventing HFD-induced impaired vasodilation (M. S. Crawford et al., 2019). Six-weeks of HFD has been shown to impair vasodilation through oxidative-stress mediated scavenging of NO as well as upregulation of inflammatory pathways including inducible nitric oxide synthase (iNOS) and cyclooxygenase (Karen L. Sweazea et al., 2010). Therefore, the aim of the present study was to determine whether OMC alters protein expression of iNOS and endothelial NOS (eNOS) in the vasculature of rats fed a control or HFD with and without OMC supplementation. Six-week old male Sprague-Dawley rats were fed either a standard chow diet (CHOW) or a HFD composed of 60% kcal from fat for 10 weeks. The rats were administered OMC at doses of 0 mg/mL (control), 0.6 mg/mL, or 3.0 mg/mL added to their drinking water. Following euthanasia with sodium pentobarbital (200 mg/kg, i.p.), mesenteric arteries and the surrounding perivascular adipose tissue were isolated and prepared for Western Blot analyses. Mesenteric arteries from HFD rats had more uncoupled eNOS (p = 0.006) and iNOS protein expression (p = 0.027) than rats fed the control diet. OMC was not effective at preventing the uncoupling of eNOS or increase in iNOS induced by HFD. Perivascular adipose tissue (PVAT) showed no significant difference in iNOS protein expression between diet or OMC treatment groups. These findings suggest that OMC is not likely working through the iNOS or eNOS pathways to improve vasodilation in these rats, but rather, appears to be working through another mechanism.
ContributorsNelson, Morgan Allen (Author) / Sweazea, Karen L (Thesis advisor) / Katsanos, Christos S (Committee member) / Baluch, Debra P (Committee member) / Arizona State University (Publisher)
Created2020
161799-Thumbnail Image.png
Description
The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality

The control, function, and evolution of sleep in animals has received little attention compared to many other fitness-relevant animal behaviors. Though natural selection has largely been thought of as the driving evolutionary force shaping sleep biology, sexual and social selection may also have transformative effects on sleep quantity and quality in animals. An overarching hypothesis is that increased levels of investment into inter-sexual choice and intra-sexual competition will reduce sleep. An alternative hypothesis is that sexual ornamentation (e.g. avian plumage coloration and song) may have evolved to communicate sleep health and may therefore be positively related to sleep investment. In this dissertation, I studied how sleep is related to components of sexual and social selection in animals (mostly in birds). I first reviewed the literature for empirical examples of how social and sexual selection drive animal sleep patterns and found support for this relationship in some common types of inter-individual interactions (e.g. mating, intra-sexual competition, parent-offspring interactions, group interactions); I also provided new ideas and hypotheses for future research. I then tested associations between sleep behavior with expression of ornaments (song and plumage coloration), using the house finch (Haemorhous mexicanus) as a model system. For both color and song, I found support for the hypothesis that individuals with exaggerated ornaments slept deeper and longer, suggesting that sleep is a critical resource for ornament elaboration and/or may be communicated by both types of sexual signal. Following this, I tested the phylogenetic association between sleep and social/sexual selection as well as other life-history traits across birds. I found that more territorial bird species sleep less, that polygynous birds sleep more than monogamous and polygynandrous birds, and that birds migrating longer distances sleep less and have less REM sleep. Finally, in the interest of applying basic knowledge about sleep biology to current global problems, I found support for the hypothesis that house finches from city environments have developed resilience to artificial light pollution at night. Altogether, I found that social, sexual, and life-history traits are indeed important and overlooked drivers of sleep behavior from multiple levels of analysis.
ContributorsHutton, Pierce (Author) / McGraw, Kevin J (Thesis advisor) / Rutowski, Ronald L (Committee member) / Deviche, Pierre J (Committee member) / Sweazea, Karen L (Committee member) / Lesku, John A (Committee member) / Arizona State University (Publisher)
Created2021
161999-Thumbnail Image.png
Description
Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with

Organisms regularly face the challenge of having to accumulate and allocate limited resources toward life-history traits. However, direct quantification of how resources are accumulated and allocated is rare. Carotenoids are among the best systems for investigating resource allocation, because they are diet-derived and multi-functional. Birds have been studied extensively with regard to carotenoid allocation towards life-history traits, but direct quantification of variation in carotenoid distribution on a whole-organism scale has yet to be done. Additionally, while we know that scavenger receptor B1 (SCARB1) is important for carotenoid absorption in birds, little is known about the factors that predict how SCARB1 is expressed in wild populations. For my dissertation, I first reviewed challenges associated with statistically analyzing tissue distributions of nutrients (nutrient profiles) and tested how tissue carotenoid distributions (carotenoid profiles) varied by sex, season, health state, and coloration in two bird species, house finches (Haemorhous mexicanus) and zebra finches (Taeniopygia guttata). Then, I investigated the relationship between dietary carotenoid availability, relative expression of SCARB1, and extent of carotenoid-based coloration in a comparative study of wood-warblers (Parulidae). In my review of studies analyzing nutrient profiles, I found that multivariate analyses were the most common, but studies rarely reported intercorrelations among nutrient types. In house finches, all tissue carotenoid profiles varied by sex, season, and coloration. For example, males during autumn (molt) had higher concentrations of 3-hydroxyechinenone (the major red carotenoid in sexually attractive male feathers) in most but not all tissues compared to other season and sex combinations. However, the relationship between color and carotenoid profiles depended on the color metric. In zebra finches, only muscle and spleen carotenoid profiles varied between immune-challenged and control birds. In wood-warblers, I found that capacity to absorb carotenoids was positively correlated with the evolution of carotenoid-based coloration but negatively associated with liver carotenoid accumulation. Altogether, my dissertation illustrates (a) the context-dependence of tissue carotenoid profile variation, (b) that carotenoid-based integumentary coloration is a reflection of tissue carotenoid profiles, and (c) that digestive physiology (e.g., carotenoid absorption) is an important consideration in the study of diet and coloration in wild birds.
ContributorsWebb, Emily (Author) / McGraw, Kevin J (Thesis advisor) / Deviche, Pierre (Committee member) / Martins, Emilia (Committee member) / Sweazea, Karen (Committee member) / Arizona State University (Publisher)
Created2021
190882-Thumbnail Image.png
Description
Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow

Speciation, or the process by which one population diverges into multiple populations that can no longer interbreed with each other, has brought about the incredible diversity of life. Mechanisms underlying this process can be more visible in the early stages of the speciation process. The mechanisms that restrict gene flow in highly mobile species with no absolute barriers to dispersal, especially marine species, are understudied. Similarly, human impacts are reshaping ecosystems globally, and we are only just beginning to understand the implications of these rapid changes on evolutionary processes. In this dissertation, I investigate patterns of speciation and evolution in two avian clades: a genus of widespread tropical seabirds (boobies, genus Sula), and two congeneric passerine species in an urban environment (cardinals, genus Cardinalis). First, I explore the prevalence of gene flow across land barriers within species and between sympatric species in boobies. I found widespread evidence of gene flow over all land barriers and between 3 species pairs. Next, I compared the effects of urbanization on the spatial distributions of two cardinal species, pyrrhuloxia (Cardinalis sinuatus) and northern cardinals (Cardinalis cardinalis), in Tucson, Arizona. I found that urbanization has different effects on the spatial distributions of two closely related species that share a similar environmental niche, and I identified environmental variables that might be driving this difference. Then I tested for effects of urbanization on color and size traits of these two cardinal species. In both of these species, urbanization has altered traits involved in signaling, heat tolerance, foraging, and maneuverability. Finally, I tested for evidence of selection on the urban populations of both cardinal species and found evidence of both parallel selection and introgression between the species, as well as selection on different genes in each species. The functions of the genes that experienced positive selection suggest that light at night, energetics, and air pollution may have acted as strong selective pressures on these species in the past. Overall, my dissertation emphasizes the role of introgression in the speciation process, identifies environmental stressors faced by wildlife in urban environments, and characterizes their evolutionary responses to those stressors.
ContributorsJackson, Daniel Nelson (Author) / McGraw, Kevin J (Thesis advisor) / Amdam, Gro (Committee member) / Sweazea, Karen (Committee member) / Taylor, Scott (Committee member) / Arizona State University (Publisher)
Created2023
161820-Thumbnail Image.png
Description
The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the

The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the United States each year. Infertility can manifest as a prolonged inability to conceive, or inability to carry a pregnancy full-term. Modern advancements in the field of reproductive medicine have begun to promote the use of Assisted Reproductive Technologies (ART) to circumvent reduced fertility in both men and women. Implementation of techniques such as In Vitro Fertilization, Intracytoplasmic Sperm Injection, and Pre-Implantation Genetic Testing have allowed many couples to conceive. There is continual effort being made towards developing more effective and personalized fertility treatments. This often begins in the form of animal research—a fundamental step in biomedical research. This dissertation examines infertility as a medical condition through the characterization of normal reproductive anatomy and physiology in the introductory overview of reproduction. Specific pathologies of male and female-factor infertility are described, which necessitates the use of ARTs. The various forms of ARTs currently utilized in a clinical setting are addressed including history, preparations, and protocols for each technology. To promote continual advancement of the field, both animal studies and human trials provide fundamental stepping-stones towards the execution of new techniques and protocols. Examples of research conducted for the betterment of human reproductive medicine are explored, including an animal study conducted in mice exploring the role of tyramine in ovulation. With the development and implementation of new technologies and protocols in the field, this also unearths ethical dilemmas that further complicate the addition of new technologies in the field. Combining an extensive review in assisted reproduction, research and clinical fieldwork, this study investigates the history and development of novel research conducted in reproductive medicine and explores the broader implications of new technologies in the field.
ContributorsPeck, Shelbi Marie (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Sweazea, Karen (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2021