This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

150864-Thumbnail Image.png
Description
Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic

Skeletal muscles arise from the myotome compartment of the somites that form during vertebrate embryonic development. Somites are transient structures serve as the anlagen for the axial skeleton, skeletal muscle, tendons, and dermis, as well as imposing the metameric patterning of the axial musculoskeletal system, peripheral nerves, and vasculature. Classic studies have described the role of Notch, Wnt, and FGF signaling pathways in controlling somite formation and muscle formation. However, little is known about the transformation of myotome compartments into identifiable post-natal muscle groups. Using a mouse model, I have undertaken an evaluation of morphological events, including hypertrophy and hyperplasia, related to the formation of several muscles positioned along the dorsal surface of the vertebrae and ribs. Lunatic fringe (Lfng) deficient embryos and neonates were also examined to further understand the role of the Notch pathway in these processes as it is a modulator of the Notch receptor and plays an important role in defining somite borders and anterior-posterior patterning in many vertebrates. Lunatic fringe deficient embryos showed defects in muscle fiber hyperplasia and hypertrophy in the iliocostalis and longissimus muscles of the erector spinae group. This novel data suggests an additional role for Lfng and the Notch signaling pathway in embryonic and fetal muscle development.
ContributorsDe Ruiter, Corinne (Author) / Rawls, J. Alan (Thesis advisor) / Wilson-Rawls, Jeanne (Committee member) / Kusumi, Kenro (Committee member) / Fisher, Rebecca E. (Committee member) / Arizona State University (Publisher)
Created2012
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
155317-Thumbnail Image.png
Description
Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor

Pregnancy and childbirth are both natural occurring events, but still little is known about the signaling mechanisms that induce contractions. Throughout the world, premature labor occurs in 12% of all pregnancies with 36% of infant deaths resulting from preterm related causes. Even though the cause of preterm labor can vary, understanding alternative signaling pathways, which affect muscle contraction, could provide additional treatment options in stopping premature labor. The uterus is composed of smooth muscle, which is innervated, with a plexus of nerves that cover the muscle fibers. Smooth muscle can be stimulated or modulated by many sources such as neurotransmitters [i.e. dopamine], hormones [i.e. estrogen], peptides [i.e. oxytocin] and amines. This study focuses on the biogenic monoamine tyramine, which is produced in the tyrosine catecholamine biosynthesis pathway. Tyramine is known to be associated with peripheral vasoconstriction, increased cardiac output, increased respiration, elevated blood glucose and the release of norepinephrine. This research has found tyramine, and its specific receptor TAAR1, to be localized within mouse uterus and that this monoamine can induce uterine contractions at levels similar to oxytocin.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Deviche, Pierre (Thesis advisor) / Smith, Brian H. (Committee member) / Arizona State University (Publisher)
Created2017
187535-Thumbnail Image.png
Description
Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the

Human preterm labor is the single most significant issue in modern obstetrics andgynecology, affecting ten percent of pregnancies, constituting the leading cause of infant death, and contributing significantly to chronic childhood disease. Obstetricians and reproductive scientists are faced with the major challenge of trying to increase the understanding of the complex molecular and cellular signals that regulate uterine activity during human pregnancy and labor. Even though preterm labor accounts for a large portion of perinatal mortality and morbidity, there still is not an effective therapeutic strategy for the treatment or prevention of preterm labor. This dissertation presents tyramine as an alternative modulator of uterine activity. In this dissertation the aims were as follows: 1) to investigate the localization of tyramine and trace amine associated receptor 1 (TAAR1) in the mouse uterine horn using immunohistochemistry as well as confirm the presence of tyramine in the uterine tissue using high performance liquid chromatography, 2) identify which TAAR 1-9 subtypes were present in the mouse uterine horn using RT-qPCR, 3) investigate ultrastructural differences in the mouse uterine horn following tyramine and dopamine treatment using transmission electron microscopy and 4) investigate pinopod ultrastructure as well as pinopod ultrastructural differences following tyramine and dopamine treatment. The research presented in this dissertation showed: 1) tyramine has very specific localization in the mouse endometrium, mainly in the uterine glands, TAAR1 is localized all throughout the perimetrium, myometrium and endometrium, and that tyramine was confirmed and quantified using HPLC, 2) TAAR 1- 9 genes are expressed in trace levels in the mouse uterine horn, 3) tyramine influences changes in endometrial ultrastructure, and 4) tyramine influences changes in pinopod ultrastructure. Ultimately these findings can help with identifying novel treatment options not only for spontaneous preterm labor contractions but also for other uterine related disorders.
ContributorsObayomi, SM Bukola (Author) / Baluch, Debra P (Thesis advisor) / Roberson, Robert (Thesis advisor) / Sweazea, Karen (Committee member) / Brent, Colin (Committee member) / Arizona State University (Publisher)
Created2023
158091-Thumbnail Image.png
Description
According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise is a potential intervention to prevent obesity-induced cardiovascular complications as exercise training has been shown to aid nitric oxide (NO)

According to the World Health Organization, obesity has nearly tripled since 1975 and forty-one million children under the age of 5 are overweight or obese (World Health Organization, 2018). Exercise is a potential intervention to prevent obesity-induced cardiovascular complications as exercise training has been shown to aid nitric oxide (NO) production as well as preserving endothelial function in obese mice (Silva et al., 2016). A soil-derived organic mineral compound (OMC) has been shown to lower blood sugar in diabetic mice (Deneau et al., 2011). Prior research has shown that, while OMC did not prevent high fat diet (HFD)-induced increases in body fat in male Sprague-Dawley rats, it was effective at preventing HFD-induced impaired vasodilation (M. S. Crawford et al., 2019). Six-weeks of HFD has been shown to impair vasodilation through oxidative-stress mediated scavenging of NO as well as upregulation of inflammatory pathways including inducible nitric oxide synthase (iNOS) and cyclooxygenase (Karen L. Sweazea et al., 2010). Therefore, the aim of the present study was to determine whether OMC alters protein expression of iNOS and endothelial NOS (eNOS) in the vasculature of rats fed a control or HFD with and without OMC supplementation. Six-week old male Sprague-Dawley rats were fed either a standard chow diet (CHOW) or a HFD composed of 60% kcal from fat for 10 weeks. The rats were administered OMC at doses of 0 mg/mL (control), 0.6 mg/mL, or 3.0 mg/mL added to their drinking water. Following euthanasia with sodium pentobarbital (200 mg/kg, i.p.), mesenteric arteries and the surrounding perivascular adipose tissue were isolated and prepared for Western Blot analyses. Mesenteric arteries from HFD rats had more uncoupled eNOS (p = 0.006) and iNOS protein expression (p = 0.027) than rats fed the control diet. OMC was not effective at preventing the uncoupling of eNOS or increase in iNOS induced by HFD. Perivascular adipose tissue (PVAT) showed no significant difference in iNOS protein expression between diet or OMC treatment groups. These findings suggest that OMC is not likely working through the iNOS or eNOS pathways to improve vasodilation in these rats, but rather, appears to be working through another mechanism.
ContributorsNelson, Morgan Allen (Author) / Sweazea, Karen L (Thesis advisor) / Katsanos, Christos S (Committee member) / Baluch, Debra P (Committee member) / Arizona State University (Publisher)
Created2020
158849-Thumbnail Image.png
Description
Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The

Next-generation sequencing is a powerful tool for detecting genetic variation. How-ever, it is also error-prone, with error rates that are much larger than mutation rates.
This can make mutation detection difficult; and while increasing sequencing depth
can often help, sequence-specific errors and other non-random biases cannot be de-
tected by increased depth. The problem of accurate genotyping is exacerbated when
there is not a reference genome or other auxiliary information available.
I explore several methods for sensitively detecting mutations in non-model or-
ganisms using an example Eucalyptus melliodora individual. I use the structure of
the tree to find bounds on its somatic mutation rate and evaluate several algorithms
for variant calling. I find that conventional methods are suitable if the genome of a
close relative can be adapted to the study organism. However, with structured data,
a likelihood framework that is aware of this structure is more accurate. I use the
techniques developed here to evaluate a reference-free variant calling algorithm.
I also use this data to evaluate a k-mer based base quality score recalibrator
(KBBQ), a tool I developed to recalibrate base quality scores attached to sequencing
data. Base quality scores can help detect errors in sequencing reads, but are often
inaccurate. The most popular method for correcting this issue requires a known
set of variant sites, which is unavailable in most cases. I simulate data and show
that errors in this set of variant sites can cause calibration errors. I then show that
KBBQ accurately recalibrates base quality scores while requiring no reference or other
information and performs as well as other methods.
Finally, I use the Eucalyptus data to investigate the impact of quality score calibra-
tion on the quality of output variant calls and show that improved base quality score
calibration increases the sensitivity and reduces the false positive rate of a variant
calling algorithm.
ContributorsOrr, Adam James (Author) / Cartwright, Reed (Thesis advisor) / Wilson, Melissa (Committee member) / Kusumi, Kenro (Committee member) / Taylor, Jesse (Committee member) / Pfeifer, Susanne (Committee member) / Arizona State University (Publisher)
Created2020
158493-Thumbnail Image.png
Description
Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work

Satellite cells are adult muscle stem cells that activate, proliferate, and differentiate into myofibers upon muscle damage. Satellite cells can be cultured and manipulated in vitro, and thus represent an accessible model for studying skeletal muscle biology, and a potential source of autologous stem cells for regenerative medicine. This work summarizes efforts to further understanding of satellite cell biology, using novel model organisms, bioengineering, and molecular and cellular approaches. Lizards are evolutionarily the closest vertebrates to humans that regenerate entire appendages. An analysis of lizard myoprogenitor cell transcriptome determined they were most transcriptionally similar to mammalian satellite cells. Further examination showed that among genes with the highest level of expression in lizard satellite cells were an increased number of regulators of chondrogenesis. In micromass culture, lizard satellite cells formed nodules that expressed chondrogenic regulatory genes, thus demonstrating increased musculoskeletal plasticity. However, to exploit satellite cells for therapeutics, development of an ex vivo culture is necessary. This work investigates whether substrates composed of extracellular matrix (ECM) proteins, as either coatings or hydrogels, can support expansion of this population whilst maintaining their myogenic potency. Stiffer substrates are necessary for in vitro proliferation and differentiation of satellite cells, while the ECM composition was not significantly important. Additionally, satellite cells on hydrogels entered a quiescent state that could be reversed when the cells were subsequently cultured on Matrigel. Proliferation and gene expression data further indicated that C2C12 cells are not a good proxy for satellite cells. To further understand how different signaling pathways control satellite cell behavior, an investigation of the Notch inhibitor protein Numb was carried out. Numb deficient satellite cells fail to activate, proliferate and participate in muscle repair. Examination of Numb isoform expression in satellite cells and embryonic tissues revealed that while developing limb bud, neural tube, and heart express the long and short isoforms of NUMB, satellite cells predominantly express the short isoforms. A preliminary immunoprecipitation- proteomics experiment suggested that the roles of NUMB in satellite cells are related to cell cycle modulation, cytoskeleton dynamics, and regulation of transcription factors necessary for satellite cell function.
ContributorsPalade, Joanna (Author) / Wilson-Rawls, Norma (Thesis advisor) / Rawls, Jeffrey (Committee member) / Kusumi, Kenro (Committee member) / Newbern, Jason (Committee member) / Stabenfeldt, Sarah (Committee member) / Arizona State University (Publisher)
Created2020
187668-Thumbnail Image.png
Description

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the

Structural Equation Modeling (SEM) is a multivariate analysis methodology that could potentially be utilized to examine the barrier effect that river systems have on genetic differentiation. In this project, river systems are split into the variables of Daily Average Discharge, Average River Width, and Seasonality measurements and regressed onto the genetic differentiation, measured as Fst. This data was collected from the USGS database (U.S. Geological Survey, 2020), sequencing files from differing literature, or Google Earth measurements. Different Structural Equation Modeling models are used to model different system structures as well as compare it to more traditional methodologies like Generalized Linear Modeling and Generalized Linear Mixed Modeling. Ultimately results were limited by the small sample size, however, interesting patterns still emerged from the models. The SE models indicate that Discharge plays a primary role in the genetic differentiation of adjacent river populations. In addition to this, the results demonstrate how quantification of indirect effects, particularly those relating to discharge, give more informative interpretations than traditional multivariate statistics alone. These findings prompt further investigations into this potential methodology.

ContributorsMaag, Garett (Author) / Dolby, Greer A. (Thesis advisor) / Kusumi, Kenro (Thesis advisor) / Stokes, Maya F. (Committee member) / Barly, Anthony (Committee member) / Arizona State University (Publisher)
Created2023
161820-Thumbnail Image.png
Description
The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the

The desire to start a family is something millions of people around the globe strive to achieve. However, many factors such as the societal changes in family planning due to increasing maternal age, use of birth control, and ever-changing lifestyles have increased the number of infertility cases seen in the United States each year. Infertility can manifest as a prolonged inability to conceive, or inability to carry a pregnancy full-term. Modern advancements in the field of reproductive medicine have begun to promote the use of Assisted Reproductive Technologies (ART) to circumvent reduced fertility in both men and women. Implementation of techniques such as In Vitro Fertilization, Intracytoplasmic Sperm Injection, and Pre-Implantation Genetic Testing have allowed many couples to conceive. There is continual effort being made towards developing more effective and personalized fertility treatments. This often begins in the form of animal research—a fundamental step in biomedical research. This dissertation examines infertility as a medical condition through the characterization of normal reproductive anatomy and physiology in the introductory overview of reproduction. Specific pathologies of male and female-factor infertility are described, which necessitates the use of ARTs. The various forms of ARTs currently utilized in a clinical setting are addressed including history, preparations, and protocols for each technology. To promote continual advancement of the field, both animal studies and human trials provide fundamental stepping-stones towards the execution of new techniques and protocols. Examples of research conducted for the betterment of human reproductive medicine are explored, including an animal study conducted in mice exploring the role of tyramine in ovulation. With the development and implementation of new technologies and protocols in the field, this also unearths ethical dilemmas that further complicate the addition of new technologies in the field. Combining an extensive review in assisted reproduction, research and clinical fieldwork, this study investigates the history and development of novel research conducted in reproductive medicine and explores the broader implications of new technologies in the field.
ContributorsPeck, Shelbi Marie (Author) / Baluch, Debra P (Thesis advisor) / Maienschein, Jane (Thesis advisor) / Sweazea, Karen (Committee member) / Ellison, Karin (Committee member) / Arizona State University (Publisher)
Created2021