This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 14
Filtering by

Clear all filters

149899-Thumbnail Image.png
Description
Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members.

Social insect colonies exhibit striking diversity in social organization. Included in this overwhelming variation in structure are differences in colony queen number. The number of queens per colony varies both intra- and interspecifically and has major impacts on the social dynamics of a colony and the fitness of its members. To understand the evolutionary transition from single to multi-queen colonies, I examined a species which exhibits variation both in mode of colony founding and in the queen number of mature colonies. The California harvester ant Pogonomyrmex californicus exhibits both variation in the number of queens that begin a colony (metrosis) and in the number of queens in adult colonies (gyny). Throughout most of its range, colonies begin with one queen (haplometrosis) but in some populations multiple queens cooperate to initiate colonies (pleometrosis). I present results that confirm co-foundresses are unrelated. I also map the geographic occurrence of pleometrotic populations and show that the phenomenon appears to be localized in southern California and Northern Baja California. Additionally, I provide genetic evidence that pleometrosis leads to primary polygyny (polygyny developing from pleometrosis) a phenomenon which has received little attention and is poorly understood. Phylogenetic and haplotype analyses utilizing mitochondrial markers reveal that populations of both behavioral types in California are closely related and have low mitochondrial diversity. Nuclear markers however, indicate strong barriers to gene flow between focal populations. I also show that intrinsic differences in queen behavior lead to the two types of populations observed. Even though populations exhibit strong tendencies on average toward haplo- or pleometrosis, within population variation exists among queens for behaviors relevant to metrosis and gyny. These results are important in understanding the dynamics and evolutionary history of a distinct form of cooperation among unrelated social insects. They also help to understand the dynamics of intraspecific variation and the conflicting forces of local adaptation and gene flow.
ContributorsOverson, Rick P (Author) / Gadau, Jürgen (Thesis advisor) / Fewell, Jennifer H (Committee member) / Hölldobler, Bert (Committee member) / Johnson, Robert A. (Committee member) / Liebig, Jürgen (Committee member) / Arizona State University (Publisher)
Created2011
151344-Thumbnail Image.png
Description
At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual

At the heart of every eusocial insect colony is a reproductive division of labor. This division can emerge through dominance interactions at the adult stage or through the production of distinct queen and worker castes at the larval stage. In both cases, this division depends on plasticity within an individual to develop reproductive characteristics or serve as a worker. In order to gain insight into the evolution of reproductive plasticity in the social insects, I investigated caste determination and dominance in the ant Harpegnathos saltator, a species that retains a number of ancestral characteristics. Treatment of worker larvae with a juvenile hormone (JH) analog induced late-instar larvae to develop as queens. At the colony level, workers must have a mechanism to regulate larval development to prevent queens from developing out of season. I identified a new behavior in H. saltator where workers bite larvae to inhibit queen determination. Workers could identify larval caste based on a chemical signal specific to queen-destined larvae, and the production of this signal was directly linked to increased JH levels. This association provides a connection between the physiological factors that induce queen development and the production of a caste-specific larval signal. In addition to caste determination at the larval stage, adult workers of H. saltator compete to establish a reproductive hierarchy. Unlike other social insects, dominance in H. saltator was not related to differences in JH or ecdysteroid levels. Instead, changes in brain levels of biogenic amines, particularly dopamine, were correlated with dominance and reproductive status. Receptor genes for dopamine were expressed in both the brain and ovaries of H. saltator, and this suggests that dopamine may coordinate changes in behavior at the neurological level with ovarian status. Together, these studies build on our understanding of reproductive plasticity in social insects and provide insight into the evolution of a reproductive division of labor.
ContributorsPenick, Clint A (Author) / Liebig, Jürgen (Thesis advisor) / Brent, Colin (Committee member) / Gadau, Jürgen (Committee member) / Hölldobler, Bert (Committee member) / Rutowski, Ron (Committee member) / Arizona State University (Publisher)
Created2012
171918-Thumbnail Image.png
Description
Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of

Dominance behavior can regulate a division of labor in a group, such as that between reproductive and non-reproductive individuals. Manipulations of insect societies in a controlled environment can reveal how dominance behavior is regulated. Here, I examined how morphological caste, fecundity, group size, and age influence the expression of dominance behavior using the ponerine ant Harpegnathos saltator. All H. saltator females have the ability to reproduce. Only those with a queen morphology that enables dispersal, however, show putative sex pheromones. In contrast, those with a worker morphology normally express dominance behavior. To evaluate how worker-like dominance behavior and associated traits could be expressed in queens, I removed the wings from alate gynes, those with a queen morphology who had not yet mated or left the nest, making them dealate. Compared to gynes with attached wings, dealates frequently performed dominance behavior. In addition, only the dealates demonstrated worker-like ovarian activity in the presence of reproductive individuals, whereas gynes with wings produced sex pheromones exclusively. Therefore, the attachment of wings determines a gyne’s expression of worker-like dominance behavior and physiology. When the queen dies, workers establish a reproductive hierarchy among themselves by performing a combination of dominance behaviors. To understand how reproductive status depends on these interactions as well as a worker’s age, I measured the frequency of dominance behaviors in groups of different size composed of young and old workers. The number of workers who expressed dominance scaled with the size of the group, but younger ones were more likely to express dominance behavior and eventually become reproductive. Therefore, the predisposition of age integrates with a self-organized process to form this reproductive hierarchy. A social insect’s fecundity and fertility signal depends on social context because fecundity increases with colony size. To evaluate how a socially dependent signal regulates dominance behavior, I manipulated a reproductive worker’s social context. Reproductive workers with reduced fecundity and a less prominent fertility signal expressed more dominance behavior than those with a stronger fertility signal and higher fecundity. Therefore, dominance behavior reinforces rank to compensate for a weak signal, indicating how social context can feed back to influence the maintenance of dominance. Mechanisms that regulate H. saltator’s reproductive hierarchy can inform how the reproductive division of labor is regulated in other groups of animals.
ContributorsPyenson, Benjamin (Author) / Liebig, Jürgen (Thesis advisor) / Hölldobler, Bert (Committee member) / Fewell, Jennifer (Committee member) / Pratt, Stephen (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2022
190800-Thumbnail Image.png
Description
Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive

Ectotherms rely on external heat to attain target body temperatures which can vary based on the animal’s current physiological activity. Many ectotherms become thermophilic (“heat-loving”) during crucial physiological processes like digestion and reproduction, behaviorally thermoregulating to increase body temperature higher than what they otherwise prefer. However, there is a positive relationship between body temperature and water loss that dictates increasing body temperature typically elicits an increase in water loss. Animals that inhabit areas where water is at least seasonally limited (e.g., deserts, wet-dry forests) may face a tradeoff between prioritizing behavioral thermophily to optimize physiological processes versus prioritizing water balance and potentially sacrificing some aspect of total performance capability.It is thus far unknown how reduced water availability and subsequent dehydration may influence thermophily in ectotherms. I hypothesized that behaviorally thermoregulating ectotherms exhibit thermophily during critical physiological events, and the extent to which thermophily is expressed is influenced by the animal’s hydric state. Using Children’s pythons (Antaresia childreni), I investigated the effects of dehydration on behavioral thermophily during digestion and reproduction. I found that dehydration caused a suppression in digestion-associated thermophily, where dehydrated snakes returned to pre-feeding body temperature sooner than they did when they were hydrated. In contrast, water deprivation at different reproductive stages had no effect on thermophily despite leading to a significant increase in the female’s plasma osmolality. ii Additionally, the timing of water deprivation during reproduction had differing effects on plasma osmolality and circulating triglyceride, total protein, and corticosterone concentrations. My research provides evidence of the sensitive and complex dynamic between body temperature, water balance, and physiological processes. At a time when many dry ecosystems are becoming hotter and drier, my investigation of dehydration and its influence on thermal dynamics and physiological metrics provides insight into cryptic effects on the vital processes of digestion and reproduction.
ContributorsAzzolini, Jill L. (Author) / Denardo, Dale F. (Thesis advisor) / John-Alder, Henry (Committee member) / Angilletta, Michael (Committee member) / Pratt, Stephen (Committee member) / Arizona State University (Publisher)
Created2023
187605-Thumbnail Image.png
Description
The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and

The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and ecology, and interactions between nutritional physiology and biopesticide resistance have very little research. This dissertation presents a multifaceted approach through three research-driven chapters that examine the nutritional physiology of M. sanguinipes and how it interacts with an entomopathogenic fungus for grasshopper management, as well as the challenges of using biopesticides for grasshopper management. Using the Geometric Framework for Nutrition (GFN), I established baseline macronutrient intake for M. sanguinipes, both in laboratory and field populations. Through this work, I found that field and lab populations can exhibit different protein (p) to carbohydrate (c) ratios, or Intake Targets (ITs), but that the field populations had ITs that matched the nutrients available in their environment. I also used the GFN to show that infections with the fungal entomopathogen Metarhizium robertsii DWR2009 did not alter ITs in M. sanguinipes. Although, when confined to carbohydrate- or protein-biased diets, infected grasshoppers had a slightly extended lifespan relative to grasshoppers fed balanced protein:carbohydrate diets. Interestingly, in a postmortem for the grasshopper, the fungus was only able to effectively sporulate on grasshoppers fed the 1p:1c diets, suggesting that grasshopper diet can have substantial impacts on the spread of fungal biopesticides throughout a population, in the absence of any inhibitory abiotic factors. Lastly, I examined the major barriers to fungal and microsporidian biopesticide usage in the United States, including low efficacy, thermal and environmental sensitivity, non-target effects, unregistered or restricted use, and economic or accessibility barriers. I also explored potential solutions to these challenges. This dissertation's focus on Melanoplus sanguinipes and Metarhizium roberstii Strain DWR2009, generates new information about how nutritional physiology and immunology intersect to impact M. sanguinipes performance. The methodology in each of the experimental chapters provides a framework for examining other problematic grasshopper species, by determining baseline nutritional physiology, and coupling nutrition with immunology to maximize the effectiveness of biological pesticides.
ContributorsZembrzuski, Deanna (Author) / Cease, Arianne (Thesis advisor) / Harrison, Jon (Committee member) / Angilletta, Michael (Committee member) / Jaronski, Stefan (Committee member) / Arizona State University (Publisher)
Created2023
154806-Thumbnail Image.png
Description
The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the

The most abundantly studied societies, with the exception of humans, are those of the eusocial insects, which include all ants. Eusocial insect societies are typically composed of many dozens to millions of individuals, referred to as nestmates, which require some form of communication to maintain colony cohesion and coordinate the activities within them. Nestmate recognition is the process of distinguishing between nestmates and non-nestmates, and embodies the first line of defense for social insect colonies. In ants, nestmate recognition is widely thought to occur through olfactory cues found on the exterior surfaces of individuals. These cues, called cuticular hydrocarbons (CHCs), comprise the overwhelming majority of ant nestmate profiles and help maintain colony identity. In this dissertation, I investigate how nestmate recognition is influenced by evolutionary, ontogenetic, and environmental factors. First, I contributed to the sequencing and description of three ant genomes including the red harvester ant, Pogonomyrmex barbatus, presented in detail here. Next, I studied how variation in nestmate cues may be shaped through evolution by comparatively studying a family of genes involved in fatty acid and hydrocarbon biosynthesis, i.e., the acyl-CoA desaturases, across seven ant species in comparison with other social and solitary insects. Then, I tested how genetic, developmental, and social factors influence CHC profile variation in P. barbatus, through a three-part study. (1) I conducted a descriptive, correlative study of desaturase gene expression and CHC variation in P. barbatus workers and queens; (2) I explored how larger-scale genetic variation in the P. barbatus species complex influences CHC variation across two genetically isolated lineages (J1/J2 genetic caste determining lineages); and (3) I experimentally examined how CHC development is influenced by an individual’s social environment. In the final part of my work, I resolved discrepancies between previous findings of nestmate recognition behavior in P. barbatus by studying how factors of territorial experience, i.e., spatiotemporal relationships, affect aggressive behaviors among red harvester ant colonies. Through this research, I was able to identify promising methodological approaches and candidate genes, which both broadens our understanding of P. barbatus nestmate recognition systems and supports future functional genetic studies of CHCs in ants.
ContributorsCash, Elizabeth I (Author) / Gadau, Jürgen (Thesis advisor) / Liebig, Jürgen (Thesis advisor) / Fewell, Jennifer (Committee member) / Hölldobler, Berthold (Committee member) / Kusumi, Kenro (Committee member) / Arizona State University (Publisher)
Created2016
154914-Thumbnail Image.png
Description
There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives

There is considerable recent interest in the dynamic nature of immune function in the context of an animal’s internal and external environment. An important focus within this field of ecoimmunology is on how availability of resources such as energy can alter immune function. Water is an additional resource that drives animal development, physiology, and behavior, yet the influence hydration has on immunity has received limited attention. In particular, hydration state may have the greatest potential to drive fluctuations in immunity and other physiological functions in species that live in water-limited environments where they may experience periods of dehydration. To shed light on the sensitivity of immune function to hydration state, I first tested the effect of hydration states (hydrated, dehydrated, and rehydrated) and digestive states on innate immunity in the Gila monster, a desert-dwelling lizard. Though dehydration is often thought to be stressful and, if experienced chronically, likely to decrease immune function, dehydration elicited an increase in immune response in this species, while digestive state had no effect. Next, I tested whether dehydration was indeed stressful, and tested a broader range of immune measures. My findings validated the enhanced innate immunity across additional measures and revealed that Gila monsters lacked a significant stress hormone response during dehydration (though results were suggestive). I next sought to test if life history (in terms of environmental stability) drives these differences in dehydration responses using a comparative approach. I compared four confamilial pairs of squamate species that varied in habitat type within each pair—four species that are adapted to xeric environments and four that are adapted to more mesic environments. No effect of life history was detected between groups, but hydration was a driver of some measures of innate immunity and of stress hormone concentrations in multiple species. Additionally, species that exhibited a stress response to dehydration did not have decreased innate immunity, suggesting these physiological responses may often be decoupled. My dissertation work provides new insight into the relationship between hydration, stress, and immunity, and it may inform future work exploring disease transmission or organismal responses to climate change.
ContributorsMoeller, Karla T (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / French, Susannah (Committee member) / Rutowski, Ronald (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2016
153262-Thumbnail Image.png
Description
In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota

In 1968, phycologist M.R. Droop published his famous discovery on the functional relationship between growth rate and internal nutrient status of algae in chemostat culture. The simple notion that growth is directly dependent on intracellular nutrient concentration is useful for understanding the dynamics in many ecological systems. The cell quota in particular lends itself to ecological stoichiometry, which is a powerful framework for mathematical ecology. Three models are developed based on the cell quota principal in order to demonstrate its applications beyond chemostat culture.

First, a data-driven model is derived for neutral lipid synthesis in green microalgae with respect to nitrogen limitation. This model synthesizes several established frameworks in phycology and ecological stoichiometry. The model demonstrates how the cell quota is a useful abstraction for understanding the metabolic shift to neutral lipid production that is observed in certain oleaginous species.

Next a producer-grazer model is developed based on the cell quota model and nutrient recycling. The model incorporates a novel feedback loop to account for animal toxicity due to accumulation of nitrogen waste. The model exhibits rich, complex dynamics which leave several open mathematical questions.

Lastly, disease dynamics in vivo are in many ways analogous to those of an ecosystem, giving natural extensions of the cell quota concept to disease modeling. Prostate cancer can be modeled within this framework, with androgen the limiting nutrient and the prostate and cancer cells as competing species. Here the cell quota model provides a useful abstraction for the dependence of cellular proliferation and apoptosis on androgen and the androgen receptor. Androgen ablation therapy is often used for patients in biochemical recurrence or late-stage disease progression and is in general initially effective. However, for many patients the cancer eventually develops resistance months to years after treatment begins. Understanding how and predicting when hormone therapy facilitates evolution of resistant phenotypes has immediate implications for treatment. Cell quota models for prostate cancer can be useful tools for this purpose and motivate applications to other diseases.
ContributorsPacker, Aaron (Author) / Kuang, Yang (Thesis advisor) / Nagy, John (Committee member) / Smith, Hal (Committee member) / Kostelich, Eric (Committee member) / Kang, Yun (Committee member) / Arizona State University (Publisher)
Created2014
155626-Thumbnail Image.png
Description
Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the

Desert environments provide considerable challenges to organisms because of high temperatures and limited food and water resources. Accordingly, desert species have behavioral and physiological traits that enable them to cope with these constraints. However, continuing human activity as well as anticipated further changes to the climate and the vegetative community pose a great challenge to such balance between an organism and its environment. This is especially true in the Arabian Desert, where climate conditions are extreme and environmental disturbances substantial. This study combined laboratory and field components to enhance our understanding of dhub (Uromastyx aegyptius) ecophysiology and determine whether habitat protection influences dhub behavior and physiology.

Results of this study showed that while body mass and body condition consistently diminished as the active season progressed, they were both greater in protected habitats compared to non-protected habitats, regardless of season. Dhubs surface activity and total body water decreased while evaporative water loss and body temperature increased as the active season progressed and ambient temperature got hotter. Total body water was also significantly affected by habitat protection.

Overall, this study revealed that, while habitat protection provided more vegetation, it had little effect on seasonal changes in surface activity. While resource availability in protected areas might allow for larger dhub populations, unprotected areas showed similar body morphometrics, activity, and body temperatures. By developing an understanding of how different coping strategies are linked to particular ecological, morphological, and phylogenetic traits, we will be able to make more accurate predictions regarding the vulnerability of species. By combining previous studies pertaining to conservation of protected species with the results of my study, a number of steps in ecosystem management are recommended to help in the preservation of dhubs in the Kuwaiti desert.
ContributorsAl-Sayegh, Mohammed (Author) / DeNardo, Dale (Thesis advisor) / Angilletta, Michael (Committee member) / Smith, Andrew (Committee member) / Sabo, John (Committee member) / Majeed, Qais (Committee member) / Arizona State University (Publisher)
Created2017
155984-Thumbnail Image.png
Description
Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced

Predicting resistant prostate cancer is critical for lowering medical costs and improving the quality of life of advanced prostate cancer patients. I formulate, compare, and analyze two mathematical models that aim to forecast future levels of prostate-specific antigen (PSA). I accomplish these tasks by employing clinical data of locally advanced prostate cancer patients undergoing androgen deprivation therapy (ADT). I demonstrate that the inverse problem of parameter estimation might be too complicated and simply relying on data fitting can give incorrect conclusions, since there is a large error in parameter values estimated and parameters might be unidentifiable. I provide confidence intervals to give estimate forecasts using data assimilation via an ensemble Kalman Filter. Using the ensemble Kalman Filter, I perform dual estimation of parameters and state variables to test the prediction accuracy of the models. Finally, I present a novel model with time delay and a delay-dependent parameter. I provide a geometric stability result to study the behavior of this model and show that the inclusion of time delay may improve the accuracy of predictions. Also, I demonstrate with clinical data that the inclusion of the delay-dependent parameter facilitates the identification and estimation of parameters.
ContributorsBaez, Javier (Author) / Kuang, Yang (Thesis advisor) / Kostelich, Eric (Committee member) / Crook, Sharon (Committee member) / Gardner, Carl (Committee member) / Nagy, John (Committee member) / Arizona State University (Publisher)
Created2017