This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 9 of 9
Filtering by

Clear all filters

157106-Thumbnail Image.png
Description
In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting

In most diploid cells, autosomal genes are equally expressed from the paternal and maternal alleles resulting in biallelic expression. However, as an exception, there exists a small number of genes that show a pattern of monoallelic or biased-allele expression based on the allele’s parent-of-origin. This phenomenon is termed genomic imprinting and is an evolutionary paradox. The best explanation for imprinting is David Haig's kinship theory, which hypothesizes that monoallelic gene expression is largely the result of evolutionary conflict between males and females over maternal involvement in their offspring. One previous RNAseq study has investigated the presence of parent-of-origin effects, or imprinting, in the parasitic jewel wasp Nasonia vitripennis (N. vitripennis) and its sister species Nasonia giraulti (N. giraulti) to test the predictions of kinship theory in a non-eusocial species for comparison to a eusocial one. In order to continue to tease apart the connection between social and eusocial Hymenoptera, this study proposed a similar RNAseq study that attempted to reproduce these results in unique samples of reciprocal F1 Nasonia hybrids. Building a pseudo N. giraulti reference genome, differences were observed when aligning RNAseq reads to a N. vitripennis reference genome compared to aligning reads to a pseudo N. giraulti reference. As well, no evidence for parent-of-origin or imprinting patterns in adult Nasonia were found. These results demonstrated a species-of-origin effect. Importantly, the study continued to build a repository of support with the aim to elucidate the mechanisms behind imprinting in an excellent epigenetic model species, as it can also help with understanding the phenomenon of imprinting in complex human diseases.
ContributorsUnderwood, Avery Elizabeth (Author) / Wilson, Melissa (Thesis advisor) / Buetow, Kenneth (Committee member) / Gile, Gillian (Committee member) / Arizona State University (Publisher)
Created2019
154969-Thumbnail Image.png
Description
The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First,

The immune system plays a dual role during neoplastic progression. It can suppress tumor growth by eliminating cancer cells, and also promote neoplastic expansion by either selecting for tumor cells that are fitter to survive in an immunocompetent host or by establishing the right conditions within the tumor microenvironment. First, I present a model to study the dynamics of subclonal evolution of cancer. I model selection through time as an epistatic process. That is, the fitness change in a given cell is not simply additive, but depends on previous mutations. Simulation studies indicate that tumors are composed of myriads of small subclones at the time of diagnosis. Because some of these rare subclones harbor pre-existing treatment-resistant mutations, they present a major challenge to precision medicine. Second, I study the question of self and non-self discrimination by the immune system, which is fundamental in the field in cancer immunology. By performing a quantitative analysis of the biochemical properties of thousands of MHC class I peptides, I find that hydrophobicity of T cell receptors contact residues is a hallmark of immunogenic epitopes. Based on these findings, I further develop a computational model to predict immunogenic epitopes which facilitate the development of T cell vaccines against pathogen and tumor antigens. Lastly, I study the effect of early detection in the context of Ebola. I develope a simple mathematical model calibrated to the transmission dynamics of Ebola virus in West Africa. My findings suggest that a strategy that focuses on early diagnosis of high-risk individuals, caregivers, and health-care workers at the pre-symptomatic stage, when combined with public health measures to improve the speed and efficacy of isolation of infectious individuals, can lead to rapid reductions in Ebola transmission.
ContributorsChowell-Puente, Diego (Author) / Castillo-Chavez, Carlos (Thesis advisor) / Anderson, Karen S (Thesis advisor) / Maley, Carlo C (Committee member) / Wilson Sayres, Melissa A (Committee member) / Blattman, Joseph N (Committee member) / Arizona State University (Publisher)
Created2016
187591-Thumbnail Image.png
Description
Resistance to existing anti-cancer drugs poses a key challenge in the field of medical oncology, in that it results in the tumor not responding to treatment using the same medications to which it responded previously, leading to treatment failure. Adaptive therapy utilizes evolutionary principles of competitive suppression, leveraging competition between

Resistance to existing anti-cancer drugs poses a key challenge in the field of medical oncology, in that it results in the tumor not responding to treatment using the same medications to which it responded previously, leading to treatment failure. Adaptive therapy utilizes evolutionary principles of competitive suppression, leveraging competition between drug resistant and drug sensitive cells, to keep the population of drug resistant cells under control, thereby extending time to progression (TTP), relative to standard treatment using maximum tolerated dose (MTD). Development of adaptive therapy protocols is challenging, as it involves many parameters, and the number of parameters increase exponentially for each additional drug. Furthermore, the drugs could have a cytotoxic (killing cells directly), or a cytostatic (inhibiting cell division) mechanism of action, which could affect treatment outcome in important ways. I have implemented hybrid agent-based computational models to investigate adaptive therapy, using either a single drug (cytotoxic or cytostatic), or two drugs (cytotoxic or cytostatic), simulating three different adaptive therapy protocols for treatment using a single drug (dose modulation, intermittent, dose-skipping), and seven different treatment protocols for treatment using two drugs: three dose modulation (DM) protocols (DM Cocktail Tandem, DM Ping-Pong Alternate Every Cycle, DM Ping-Pong on Progression), and four fixed-dose (FD) protocols (FD Cocktail Intermittent, FD Ping-Pong Intermittent, FD Cocktail Dose-Skipping, FD Ping-Pong Dose-Skipping). The results indicate a Goldilocks level of drug exposure to be optimum, with both too little and too much drug having adverse effects. Adaptive therapy works best under conditions of strong cellular competition, such as high fitness costs, high replacement rates, or high turnover. Clonal competition is an important determinant of treatment outcome, and as such treatment using two drugs leads to more favorable outcome than treatment using a single drug. Switching drugs every treatment cycle (ping-pong) protocols work particularly well, as well as cocktail dose modulation, particularly when it is feasible to have a highly sensitive measurement of tumor burden. In general, overtreating seems to have adverse survival outcome, and triggering a treatment vacation, or stopping treatment sooner when the tumor is shrinking seems to work well.
ContributorsSaha, Kaushik (Author) / Maley, Carlo C (Thesis advisor) / Forrest, Stephanie (Committee member) / Anderson, Karen S (Committee member) / Cisneros, Luis H (Committee member) / Arizona State University (Publisher)
Created2023
191030-Thumbnail Image.png
Description
Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid

Emerging pathogens present several challenges to medical diagnostics. Primarily, the exponential spread of a novel pathogen through naïve populations require a rapid and overwhelming diagnostic response at the site of outbreak. While point-of-care (PoC) platforms have been developed for detection of antigens, serologic responses, and pathogenic genomes, only nucleic acid diagnostics currently have the potential to be developed and manufactured within weeks of an outbreak owing to the speed of next-generation sequencing and custom DNA synthesis. Among nucleic acid diagnostics, isothermal amplification strategies are uniquely suited for PoC implementation due to their simple instrumentation and lack of thermocycling requirement. Unfortunately, isothermal strategies are currently prone to spurious nonspecific amplification, hindering their specificity and necessitating extensive empirical design pipelines that are both time and resource intensive. In this work, isothermal amplification strategies are extensively compared for their feasibility of implementation in outbreak response scenarios. One such technology, Loop-mediated Amplification (LAMP), is identified as having high-potential for rapid development and PoC deployment. Various approaches to abrogating nonspecific amplification are described including a novel in silico design tool based on coarse-grained simulation of interactions between thermophilic DNA polymerase and DNA strands in isothermal reaction conditions. Nonspecific amplification is shown to be due to stabilization of primer secondary structures by high concentrations of Bst DNA polymerase and a mechanism of micro-complement-mediated cross-priming is demonstrated as causal via nanopore sequencing of nonspecific reaction products. The resulting computational model predicts primer set background in 64% of 67 test assays and its usefulness is illustrated further by determining problematic primers in a West Nile Virus-specific LAMP primer set and optimizing primer 3’ nucleotides to eliminate micro-complements within the reaction, resulting in inhibition of background accumulation. Finally, the emergence of Orthopox monkeypox (MPXV) as a recurring threat is discussed and SimCycle is utilized to develop a novel technique for clade-specific discrimination of MPXV based on bridging viral genomic rearrangements (Bridging LAMP). Bridging LAMP is implemented in a 4-plex microfluidic format and demonstrates 100% sensitivity in detection of 100 copies of viral lysates and 45 crude MPXV-positive patient samples collected during the 2022 Clade IIb outbreak.
ContributorsKnappenberger, Mark Daniel (Author) / Anderson, Karen S (Thesis advisor) / LaBaer, Joshua (Committee member) / Roberson, Robert (Committee member) / Lindsay, Stuart (Committee member) / Arizona State University (Publisher)
Created2023
158497-Thumbnail Image.png
Description
The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume

The intracellular motility seen in the cytoplasm of angiosperm plant pollen tubes is known as reverse fountain cytoplasmic streaming (i.e., cyclosis). This effect occurs when organelles move anterograde along the cortex of the cell and retrograde down the center of the cell. The result is a displacement of cytoplasmic volume causing a cyclic motion of organelles and bulk liquid. Visually, the organelles appear to be traveling in a backwards fountain hence the name. The use of light microscopy bioimaging in this study has documented reverse fountain cytoplasmic streaming for the first time in fungal hyphae of Rhizopus oryzae and other members in the order Mucorales (Mucoromycota). This is a unique characteristic of the mucoralean fungi, with other fungal phyla (e.g., Ascomycota, Basidiomycota) exhibiting unidirectional cytoplasmic behavior that lacks rhythmic streaming (i.e., sleeve-like streaming). The mechanism of reverse fountain cytoplasmic streaming in filamentous fungi is currently unknown. However, in angiosperm plant pollen tubes it’s correlated with the arrangement and activity of the actin cytoskeleton. Thus, the current work assumes that filamentous actin and associated proteins are directly involved with the cytoplasmic behavior in Mucorales hyphae. From an evolutionary perspective, fungi in the Mucorales may have developed reverse fountain cytoplasmic streaming as a method to transport various organelles over long and short distances. In addition, the mechanism is likely to facilitate driving of polarized hyphal growth.
ContributorsShange, Phakade Mdima (Author) / Roberson, Robert W. (Thesis advisor) / Gile, Gillian (Committee member) / Baluch, Debra (Committee member) / Arizona State University (Publisher)
Created2020
161614-Thumbnail Image.png
Description
Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest

Parabasalia is a phylum of flagellated protists with a large range of cell sizes, spanning from as little as 7 µm in length (e.g. Pentatrichomonas hominis) to well over 300 µm (e.g. Pseudotrichonympha grassii). Many Parabasalia are associated with animals in mutualistic, parasitic, or commensal relationships. The largest Parabasalia species are obligate mutualists of termites, which help to digest lignocellulose. While the specific digestive roles of different protist species are mostly unknown, Parabasalia with different cell sizes are known to inhabit different regions of the termite hindgut. It is currently unclear whether these size differences are driven by selection or drift, but it is well known that cell size correlates with genome size in eukaryotes. Therefore, in order to gain insight into possible selection pressures or mechanisms for cell size increase, genome sizes were estimated for the five Parabasalia species that inhabit the hindgut of Coptotermes formosanus Shiraki. The cell volumes and C-values for the five protist species are 89,190 µm3 and 147 pg in Pseudotrichonympha grassii, 26,679 µm3 and 56 pg in Holomastigotoides hartmanni, 8,985 µm3 and 29 pg in Holomastigotoides minor, 1,996 µm3 and 12 pg in Cononympha leidyi , and 386 µm3 and 6 pg in Cononympha koidzumii. The positive correlation between genome size and cell size was maintained in this group (R2 = 0.76). These genome sizes are much larger than the previously estimated genome sizes of non-termite associated Parabasalia, which spanned 2-fold ranging from 0.088 pg (in Tetratrichomonas gallinarum) to 0.181 pg (in Trichomonas foetus). With these new estimates, the range now spans over 1,500-fold from 0.088 pg to 147 pg in P. grassii, implying potential differences in the level of selective pressures for genome size in termite-associated Parabasalia compared to other protists.
ContributorsMontoya, Samantha (Author) / Gile, Gillian (Thesis advisor) / Wideman, Jeremy (Committee member) / Chouvenc, Thomas (Committee member) / Arizona State University (Publisher)
Created2021
153561-Thumbnail Image.png
Description
Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and

Currently in the US, many patients with cancer do not benefit from the population-based screening, due to challenges associated with the existing cancer screening scheme. Blood-based diagnostic assays have the potential to detect diseases in a non-invasive way. Proteins released from small early tumors may only be present intermittently and get diluted to tiny concentrations in the blood, making them difficult to use as biomarkers. However, they can induce autoantibody (AAb) responses, which can amplify the signal and persist in the blood even if the antigen is gone. Circulating autoantibodies is a promising class of molecules that have potential to serve as early detection biomarkers for cancers. This Ph.D thesis aims to screen for autoantibody biomarkers for the early detection of two deadly cancer, basal-like breast cancer and lung adenocarcinoma. First, a method was developed to display proteins in both native and denatured conformation on protein array. This method adopted a novel protein tag technology, called HaloTag, to covalently immobilize proteins on glass slide surface. The covalent attachment allowed these proteins to endure harsh treatment without getting dissociated from slide surface, which enabled the profiling of antibody responses against both conformational and linear epitopes. Next, a plasma screening protocol was optimized to significantly increase signal to noise ratio of protein array based AAb detection. Following this, the AAb responses in basal-like breast cancer were explored using nucleic acid programmable protein arrays (NAPPA) containing 10,000 full-length human proteins in 45 cases and 45 controls. After verification in a large sample set (145 basal-like breast cancer cases / 145 controls / 70 non-basal breast cancer) by ELISA, a 13-AAb classifier was developed to differentiate patients from controls with a sensitivity of 33% at 98% specificity. Similar approach was also applied to the lung cancer study to identify AAbs that distinguished lung cancer patients from computed-tomography positive benign pulmonary nodules (137 lung cancer cases, 127 smoker controls, 170 benign controls). In this study, two panels of AAbs were discovered that showed promising sensitivity and specificity. Six out of eight AAb targets were also found to have elevated mRNA level in lung adenocarcinoma patients using TCGA data. These projects as a whole provide novel insights on the association between AAbs and cancer, as well as general B cell antigenicity against self-proteins.
ContributorsWang, Jie (Author) / LaBaer, Joshua (Thesis advisor) / Anderson, Karen S (Committee member) / Lake, Douglas F (Committee member) / Chang, Yung (Committee member) / Arizona State University (Publisher)
Created2015
168533-Thumbnail Image.png
Description
Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems.

Predatory bacteria are a guild of heterotrophs that feed directly on other living bacteria. They belong to several bacterial lineages that evolved this mode of life independently and occur in many microbiomes and environments. Current knowledge of predatory bacteria is based on culture studies and simple detection in natural systems. The ecological consequences of their activity, unlike those of other populational loss factors like viral infection or grazing by protists, are yet to be assessed. During large-scale cultivation of biological soil crusts intended for arid soil rehabilitation, episodes of catastrophic failure were observed in cyanobacterial growth that could be ascribed to the action of an unknown predatory bacterium using bioassays. This predatory bacterium was also present in natural biocrust communities, where it formed clearings (plaques) up to 9 cm in diameter that were visible to the naked eye. Enrichment cultivation and purification by cell-sorting were used to obtain co-cultures of the predator with its cyanobacterial prey, as well as to identify and characterize it genomically, physiologically and ultrastructurally. A Bacteroidetes bacterium, unrelated to any known isolate at the family level, it is endobiotic, non-motile, obligately predatory, displays a complex life cycle and very unusual ultrastructure. Extracellular propagules are small (0.8-1.0 µm) Gram-negative cocci with internal two-membrane-bound compartmentalization. These gain entry to the prey likely using a suite of hydrolytic enzymes, localizing to the cyanobacterial cytoplasm, where growth begins into non-compartmentalized pseudofilaments that undergo secretion of vesicles and simultaneous multiple division to yield new propagules. I formally describe it as Candidatus Cyanoraptor togatus, hereafter Cyanoraptor. Its prey range is restricted to biocrust-forming, filamentous, non-heterocystous, gliding, bundle-making cyanobacteria. Molecular meta-analyses showed its worldwide distribution in biocrusts. Biogeochemical analyses of Cyanoraptor plaques revealed that it causes a complete loss of primary productivity, and significant decreases in other biocrusts properties such as water-retention and dust-trapping capacity. Extensive field surveys in the US Southwest revealed its ubiquity and its dispersal-limited, aggregated spatial distribution and incidence. Overall, its activity reduces biocrust productivity by 10% at the ecosystem scale. My research points to predatory bacteria as a significant, but overlooked, ecological force in shaping soil microbiomes.
ContributorsBethany Rakes, Julie Ann (Author) / Garcia-Pichel, Ferran (Thesis advisor) / Gile, Gillian (Committee member) / Cao, Huansheng (Committee member) / Jacobs, Bertram (Committee member) / Arizona State University (Publisher)
Created2022
193649-Thumbnail Image.png
Description
To combat the global antimalarial resistance crisis effective resistance management strategies are needed. To do so, I need to gain a better understanding of the ecological interactions occurring within malaria infections. Despite the importance of the complex interplay among co-infecting strains, our current knowledge and empirical data of within-host diversity

To combat the global antimalarial resistance crisis effective resistance management strategies are needed. To do so, I need to gain a better understanding of the ecological interactions occurring within malaria infections. Despite the importance of the complex interplay among co-infecting strains, our current knowledge and empirical data of within-host diversity and malaria disease dynamics is limited. In this thesis, I explore the multifaceted dynamics of malaria infections through an ecological lens. My overall research question is: "How do ecological interactions, including niche complementarity, competition dynamics, and the cost of resistance, shape the outcomes of malaria infections, and what implications does this have on understanding and improving resistance management strategies?” In Chapter II, titled “Niche Complementarity in Malaria Infections” I demonstrate that ecological principles are observed in malarial infections by experimentally manipulating the biodiversity of rodent malaria P. chabaudi infections. I observed that some parasites experienced competitive suppression, others experienced competitive facilitation, while others were not impacted. Next, in Chapter III, titled “Determining the Differential Impact of Competition Between Genetically Distinct Plasmodium falciparum Strains” I investigate the differential effect of competition among six genetically distinct strains. The impact of competition varied between strain combinations, and both suppression and facilitation were observed, but most pairings had no competitive interactions. Lastly, in Chapter IV, titled “Assessing Fitness Costs in Malaria Parasites: A Comprehensive Review and Implications for Drug Resistance Management”, I summarize where the field currently stands and what evidence there is for the presence of a fitness cost, or lack thereof, and I highlight the current gaps in knowledge. I found that evidence from field, in vitro, and animal models are overall suggestive of the presence of a fitness cost, however, these costs were not always found. Amid the current focus on malaria eradication, it is crucial to understand the impact of biodiversity on disease severity. By incorporating an ecological approach to infectious disease systems, I can gain insights on within-host interactions and how they impact parasite fitness and transmissibility.
ContributorsSegovia, Xyonane (Author) / Huijben, Silvie (Thesis advisor) / Bean, Heather (Committee member) / Gile, Gillian (Committee member) / Hogue, Ian (Committee member) / Lake, Douglas (Committee member) / Arizona State University (Publisher)
Created2024