This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 10 of 11
Filtering by

Clear all filters

151709-Thumbnail Image.png
Description
Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of

Modified and artificial water sources can be used as a management tool for game and non-game wildlife species. State, federal, and private agencies allocate significant resources to install and maintain artificial water sources (AWS) annually. Capture mark recapture methods were used to sample small mammal communities in the vicinity of five AWS and five paired control sites (treatments) in the surrounding Sonoran desert from October 2011 to May 2012. I measured plant species richness, density, and percent cover in the spring of 2012. A Multi-response Permutation Procedure was used to identify differences in small mammal community abundance, biomass, and species richness by season and treatment. I used Principle Component Analysis to reduce 11 habitat characteristics to five habitat factors. I related rodent occurrence to habitat characteristics using multiple and logistic regression. A total of 370 individual mammals representing three genera and eight species of rodents were captured across 4800 trap nights. Desert pocket mouse (Chaetodipus penicillatus) was the most common species in both seasons and treatments. Whereas rodent community abundance, biomass, and richness were similar between seasons, community variables of AWS were greater than CS. Rodent diversity was similar between treatments. Desert pocket mouse abundance and biomass were twice as high at AWS when compared to controls. Biomass of white-throated woodrat (Neotoma albigula) was five times greater at AWS. Habitat characteristics were similar between treatments. Neither presence of water nor distance to water explained substantial habitat variation. Occurrence of rodent species was associated with habitat characteristics. Desert rodent communities are adapted for arid environments (i.e. Heteromyids) and are not dependent on "free water". Higher abundances of desert pocket mouse at AWS were most likely related to increased disturbance and debris and not the presence of water. The results of this study and previous studies suggest that more investigation is needed and that short term studies may not be able to detect interactions (if any) between AWS and desert small mammal communities.
ContributorsSwitalski, Aaron (Author) / Bateman, Heather L (Thesis advisor) / Miller, William (Committee member) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2013
152736-Thumbnail Image.png
Description
Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for

Grassland habitat restoration activities are occurring within the semi-arid grasslands of the Agua Fria National Monument located 65 km north of Phoenix, AZ. The goal of these restoration activities is to reduce woody species encroachment, remove lignified plant materials and recycle nutrients within the ecosystem thus improving range conditions for both wildlife species and livestock. Broadcast burning, juniper thinning and slash pile burns are the principle tools used to accomplish resource objectives. Line cover, belt transect, densities, heights and biomass of vegetation data were collected to determine the response of the vegetative community to habitat restoration activities. Principal Component Analysis (PCA) was used to reduce data analysis to the more influential factors. Regression analysis was conducted for statistically significant response variables. Quadratic regression analysis found low predictive values. In broadcast burn treatment units, all important factors as identified by PCA had low predictive factors but significantly differed (R2 <0.01, p<0.05) between unburned and the years post treatment. Regression analysis found significant, albeit weak, relationships between time since treatment and independent variables. In pile burn treatment units, data reduction by PCA was not possible in a biologically meaningful way due to the high variability within treatment units. This suggests the effect of juniper encroachment on grassland vegetation persists long after junipers have been cut and burned. This study concluded that broadcast burning of the central Arizona grasslands does significantly alter many components of the vegetative community. Fuels treatments generally initially reduced both perennial woody species and grasses in number and height for two year post fire. However, palatable shrubs, in particular shrubby buckwheat, were not significantly different in broadcast burn treatment areas. The vegetative community characteristics of juniper encroached woodlands of central Arizona are unaffected by the removal and burning of junipers aside from the removal of hiding cover for predators for multiple years. It is recommended that habitat restoration activities continue provided the needs of wildlife are considered, especially pronghorn, with the incorporation of state and transition models specific to each of the respective ecological site descriptions and with the consideration of the effects of fire to pronghorn fawning habitat.
ContributorsSitzmann, Paul Roman (Author) / Miller, William (Thesis advisor) / Alford, Eddie (Committee member) / Green, Douglas (Committee member) / Arizona State University (Publisher)
Created2014
152797-Thumbnail Image.png
Description
There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices.

There has been considerable advancement in the algae research field to move algae production for biofuels and bio-products forward to become commercially viable. However, there is one key element that humans cannot control, the natural externalities that impact production. An algae cultivation system is similar to agricultural crop farming practices. Algae are grown on an area of land for a certain time period with the aim of harvesting the biomass produced. One of the advantages of using algae biomass is that it can be used as a source of energy in the form of biofuels. Major advances in algae research and development practices have led to new knowledge about the remarkable potential of algae to serve as a sustainable source of biofuel. The challenge is to make the price of biofuels from algae cost-competitive with the price of petroleum-based fuels. The scope of this research was to design a concept for an automated system to control specific externalities and determine if integrating the system in an algae cultivation system could improve the algae biomass production process. This research required the installation and evaluation of an algae cultivation process, components selection and computer software programming for an automated system. The results from the automated system based on continuous real time monitored variables validated that the developed system contributes insights otherwise not detected from a manual measurement approach. The implications of this research may lead to technology that can be used as a base model to further improve algae cultivation systems.
ContributorsPuruhito, Emil (Author) / Sommerfeld, Milton (Thesis advisor) / Gintz, Jerry (Thesis advisor) / Alford, Eddie (Committee member) / Arizona State University (Publisher)
Created2014
150761-Thumbnail Image.png
Description
Two nearly homogenous 60 acre watersheds near Heber, Arizona, within the Apache-Sitgreaves National Forest, were burned at moderate and high severities during the 2002 Rodeo-Chediski wildfire. Each watershed had 30 permanent plots located on it from earlier studies. In 2011, nearly 10 years following the fire, the plots were re-measured

Two nearly homogenous 60 acre watersheds near Heber, Arizona, within the Apache-Sitgreaves National Forest, were burned at moderate and high severities during the 2002 Rodeo-Chediski wildfire. Each watershed had 30 permanent plots located on it from earlier studies. In 2011, nearly 10 years following the fire, the plots were re-measured to determine how fire severity affects the long term vegetative recovery of this ecosystem; specifically herbaceous production and tree regeneration and density. Canopy cover, litter depth, herbaceous weight, herbaceous cover and shrub cover are vital indicators of herbaceous production, and were found to be significantly different between the sites. Canopy cover and litter depth were found to be significantly higher on the moderate site while herbaceous weight, herbaceous cover and shrub cover were found to be significantly higher on the high site. Tree densities of the three present tree species, ponderosa pine, alligator juniper, and gambel oak, were measured and divided into five size classes to distinguish the diversity of the communities. The mean densities for each species and size class were analyzed to determine if there were any statistically significant differences between the sites. Ponderosa pine saplings (regeneration) were found to have no significant differences between the sites. Juniper and oak saplings were found to be significantly higher on the high site. The remaining four ponderosa pine size classes were found to be significantly higher on the moderate site while the remaining four size classes for juniper and oak were found to have no statistical differences between the sites. Further analysis of the tree proportions revealed that the ponderosa pine species was significantly higher on the moderate site while juniper and oak were significantly higher on the high site. Species specific proportion analysis showed that the ponderosa pine size classes were significantly different across the sites while the juniper and oak size classes showed no significant differences between the sites. Within the ponderosa pine size classes, saplings were found to be significantly higher on the high site while the remaining four classes were significantly higher on the moderate site.
ContributorsNeeley, Heidi L (Author) / Alford, Eddie (Thesis advisor) / Pyne, Stephen (Committee member) / Brady, Ward (Committee member) / Arizona State University (Publisher)
Created2012
150097-Thumbnail Image.png
Description
Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting

Once considered an abundant species in the eastern United States, local populations of red-shouldered hawks, Buteo lineatus, have declined due to habitat destruction. This destruction has created suitable habitat for red-tailed hawks, Buteo jamaicensis, and therefore increased competition between these two raptor species. Since suitable habitat is the main limiting factor for raptors, a computer model was created to simulate the effect of habitat loss in central Maryland and the impact of increased competition between the more aggressive red-tailed hawk. These simulations showed urban growth contributed to over a 30% increase in red-tailed hawk habitat as red-shouldered hawk habitat decreased 62.5-70.1% without competition and 71.8-76.3% with competition. However there was no significant difference seen between the rate of available habitat decline for current and predicted development growth.
ContributorsMurillo, Crystal (Author) / Whysong, Gary (Thesis advisor) / Alford, Eddie (Committee member) / Miller, William (Committee member) / Arizona State University (Publisher)
Created2011
150816-Thumbnail Image.png
Description
Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate

Land management practices such as domestic animal grazing can alter plant communities via changes in soil structure and chemistry, species composition, and plant nutrient content. These changes can affect the abundance and quality of plants consumed by insect herbivores with consequent changes in population dynamics. These population changes can translate to massive crop damage and pest control costs. My dissertation focused on Oedaleus asiaticus, a dominant Asian locust, and had three main objectives. First, I identified morphological, physiological, and behavioral characteristics of the migratory ("brown") and non-migratory ("green") phenotypes. I found that brown morphs had longer wings, larger thoraxes and higher metabolic rates compared to green morphs, suggesting that developmental plasticity allows greater migratory capacity in the brown morph of this locust. Second, I tested the hypothesis of a causal link between livestock overgrazing and an increase in migratory swarms of O. asiaticus. Current paradigms generally assume that increased plant nitrogen (N) should enhance herbivore performance by relieving protein-limitation, increasing herbivorous insect populations. I showed, in contrast to this scenario, that host plant N-enrichment and high protein artificial diets decreased the size and viability of O. asiaticus. Plant N content was lowest and locust abundance highest in heavily livestock-grazed fields where soils were N-depleted, likely due to enhanced erosion and leaching. These results suggest that heavy livestock grazing promotes outbreaks of this locust by reducing plant protein content. Third, I tested for the influence of dietary imbalance, in conjunction with high population density, on migratory plasticity. While high population density has clearly been shown to induce the migratory morph in several locusts, the effect of diet has been unclear. I found that locusts reared at high population density and fed unfertilized plants (i.e. high quality plants for O. asiaticus) had the greatest migratory capacity, and maintained a high percent of brown locusts. These results did not support the hypothesis that poor-quality resources increased expression of migratory phenotypes. This highlights a need to develop new theoretical frameworks for predicting how environmental factors will regulate migratory plasticity in locusts and perhaps other insects.
ContributorsCease, Arianne (Author) / Harrison, Jon (Thesis advisor) / Elser, James (Thesis advisor) / DeNardo, Dale (Committee member) / Quinlan, Michael (Committee member) / Sabo, John (Committee member) / Arizona State University (Publisher)
Created2012
156271-Thumbnail Image.png
Description
The introduction of livestock to the vast majority of public lands may be used to simulate the conditions provided by herbivorous grazers in the past, however little data has been collected on the effects of livestock grazing in Sonoran desert habitats. Vegetative species that are characteristic of the Arizona Upland

The introduction of livestock to the vast majority of public lands may be used to simulate the conditions provided by herbivorous grazers in the past, however little data has been collected on the effects of livestock grazing in Sonoran desert habitats. Vegetative species that are characteristic of the Arizona Upland subdivision of the Sonoran desert did not evolve with extensive grazing by large ungulate populations, and therefore the response to livestock grazing is of particular interest. Four historic Parker 3-step clusters in south-central Arizona were sampled in three cohorts between 1953 and 2016 to interpret changes in rangeland health using soil coverage data, species richness and frequency, and long-term photo point comparisons. Cattle grazing was active across the allotment until 1984, allowing approximately 30 years of rest before the third and final cohort was measured. Over the entirety of this study, there was a 66.67% increase in perennial basal hits, a 56.29% increase in rock, and a 44.55% increase of forage basal hits. Decreases were seen in litter (-57.69%) and bare soil hits (-8.76%). Cluster 3 consistently had a lower percent of cover across all classes of vegetation in the 2014 cohort

(-81.61%), however the average percent of cover increased by 63.16% (40 hits) across the allotment. Available species richness data from 1971 and 2014 cohorts indicates a 112% increase in unique species; however, species richness increases in the 2014 cohort are largely based on recruitment of non-palatable species (71%). Although the status of some species were undetermined, all individuals identified to species in the invader class (non-palatable) were determined to be native to the study site. Perennial grass frequency became less abundant over the duration of this study, while growth was predominantly observed in shrubs. Increases in species frequency was detected on two of the four clusters measured in the 2014 cohort; the growth was primarily observed in jojoba (Simmondsia chinensis), oak (Quercus spp.), and catclaw acacia (Senegalia greggii) in C4, and hopseed bush (Dodonaea viscosa) in C2.
ContributorsDunn, Kellie Ann (Author) / Alford, Eddie (Thesis advisor) / Cunningham, Stanley (Committee member) / Stutz, Jean (Committee member) / Arizona State University (Publisher)
Created2018
187874-Thumbnail Image.png
Description
Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence

Understanding how and why animals choose what to eat is one of the fundamental goals of nutritional and behavioral biology. This question can be scaled to animals that live in social groups, including eusocial insects. One of the factors that plays an important role in foraging decisions is the prevalence of specific nutrients and their relative balance. This dissertation explores the role of relative nutrient content in the food selection decisions of a species that is eusocial and also agricultural, the desert leafcutter ant Acromyrmex versicolor. A dietary choice assay, in which the relative amount of protein and carbohydrates in the available diets was varied, demonstrated that A. versicolor colonies regulate relative collection of protein and carbohydrates. Tracking the foraging behavior of individual workers revelaed that foragers vary in their relative collection of experimental diets and in their foraging frequency, but that there is no relationship between these key factors of foraging behavior. The high proportion of carbohydrates preferred by lab colonies suggests that they forage to nutritionally support the fungus rather than brood and workers. To test this, the relative amounts of 1) fungus, and 2) brood (larvae) was manipulated and foraging response was measured. Changing the amount of brood had no effect on foraging. Although decreasing the size of fungus gardens did not change relative P:C collection, it produced significant increases in caloric intake, supporting the assertion that the fungus is the main driver of colony nutrient regulation. The nutritional content of naturally harvested forage material collected from field colonies was measured, as was recruitment to experimental diets with varying relative macronutrient content. Field results confirmed a strong colony preference for high carbohydrate diets. They also indicated that this species may, at times, be limited in its ability to collect sufficiently high levels of carbohydrates to meet optimal intake. This dissertation provides important insights about fundamental aspects of leafcutter ant biology and extends our understanding of the role of relative nutrient content in foraging decisions to systems that span multiple trophic levels.
ContributorsSmith, Nathan Edward (Author) / Fewell, Jennifer H (Thesis advisor) / Harrison, Jon F (Committee member) / Pavlic, Ted (Committee member) / Cease, Arianne (Committee member) / Hoelldobler, Bert (Committee member) / Arizona State University (Publisher)
Created2023
187605-Thumbnail Image.png
Description
The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and

The migratory grasshopper (Melanoplus sanguinipes) is one of the most economically important grasshoppers in the western rangelands of the United States (US), capable of causing incredible amounts of damage to crops and rangelands. While M. sanguinipes has been the focus of many research studies, areas like field nutritional physiology and ecology, and interactions between nutritional physiology and biopesticide resistance have very little research. This dissertation presents a multifaceted approach through three research-driven chapters that examine the nutritional physiology of M. sanguinipes and how it interacts with an entomopathogenic fungus for grasshopper management, as well as the challenges of using biopesticides for grasshopper management. Using the Geometric Framework for Nutrition (GFN), I established baseline macronutrient intake for M. sanguinipes, both in laboratory and field populations. Through this work, I found that field and lab populations can exhibit different protein (p) to carbohydrate (c) ratios, or Intake Targets (ITs), but that the field populations had ITs that matched the nutrients available in their environment. I also used the GFN to show that infections with the fungal entomopathogen Metarhizium robertsii DWR2009 did not alter ITs in M. sanguinipes. Although, when confined to carbohydrate- or protein-biased diets, infected grasshoppers had a slightly extended lifespan relative to grasshoppers fed balanced protein:carbohydrate diets. Interestingly, in a postmortem for the grasshopper, the fungus was only able to effectively sporulate on grasshoppers fed the 1p:1c diets, suggesting that grasshopper diet can have substantial impacts on the spread of fungal biopesticides throughout a population, in the absence of any inhibitory abiotic factors. Lastly, I examined the major barriers to fungal and microsporidian biopesticide usage in the United States, including low efficacy, thermal and environmental sensitivity, non-target effects, unregistered or restricted use, and economic or accessibility barriers. I also explored potential solutions to these challenges. This dissertation's focus on Melanoplus sanguinipes and Metarhizium roberstii Strain DWR2009, generates new information about how nutritional physiology and immunology intersect to impact M. sanguinipes performance. The methodology in each of the experimental chapters provides a framework for examining other problematic grasshopper species, by determining baseline nutritional physiology, and coupling nutrition with immunology to maximize the effectiveness of biological pesticides.
ContributorsZembrzuski, Deanna (Author) / Cease, Arianne (Thesis advisor) / Harrison, Jon (Committee member) / Angilletta, Michael (Committee member) / Jaronski, Stefan (Committee member) / Arizona State University (Publisher)
Created2023
191702-Thumbnail Image.png
Description
Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is

Vector control plays an important role in the prevention and control of mosquito-borne diseases (MBDs). As there are no (prophylactic) drugs and/or vaccines available for many arboviral diseases (such as zika, chikungunya, Saint Louis encephalitis, Ross River virus), the frontline approach to prevent or reduce disease morbidity and mortality is through the reduction of the mosquito vector population size and/or reducing vector-human contact using insecticides. Frontline tools in malaria (an MBD caused by a parasite) control and elimination have been drugs (targeting the malaria parasite) and insecticides (targeting the vectors) through indoor residual spraying (IRS) (spraying the internal walls and sometimes the roofs of dwellings with residual insecticides to kill adult mosquito vectors), and long-lasting insecticidal nets (LLINs), while arboviral vectors are frequently targeted using outdoor fogging and space spraying (indoor or outdoor spraying of insecticides to kill adult mosquito vectors). Integrative and novel vector control efforts are urgently needed since the aforementioned tools may not be as effective against those mosquito species that are resistant to insecticides and/or have a different (or changed) behavior allowing them to avoid existing tools. In Chapters 2 and 3, I investigate mosquito vector surveillance in Arizona by (i) discussing the species composition and public health implications of the State’s mosquito fauna, and (ii) comparing the effectiveness of 4 different carbon dioxide (CO2) sources in attracting different mosquito species on the Arizona State University Tempe Campus. In Chapters 4 and 5, I investigate a novel vector control tool by (i) completing a literature review on using electric fields (EFs) to control insects, and (ii) presenting novel data on using Insulated Conductor Wires (ICWs) to generate EFs that prevent host-seeking female Aedes aegypti from entering spaces. In Chapter 6, I discuss the non-target effects of chemical malaria control on other arthropods, including other biological and mechanical infectious disease vectors. Overall, this dissertation highlights the important role that the development of novel surveillance and vector control tools could play in improved mosquito control, which ultimately will reduce disease morbidity and mortality.
ContributorsJobe, Ndey Bassin (Author) / Paaijmans, Krijn (Thesis advisor) / Cease, Arianne (Committee member) / Hall, Sharon (Committee member) / Huijben, Silvie (Committee member) / Arizona State University (Publisher)
Created2024