This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 3 of 3
Filtering by

Clear all filters

151260-Thumbnail Image.png
Description
Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed

Social structure affects many aspects of ecology including mating systems, dispersal, and movements. The quality and pattern of associations among individuals can define social structure, thus detailed behavioral observations are vital to understanding species social structure and many other aspects of their ecology. In squamate reptiles (lizards and snakes), detailed observations of associations among individuals have been primarily limited to several lineages of lizards and have revealed a variety of social structures, including polygynous family group-living and monogamous pair-living. Here I describe the social structure of two communities within a population of Arizona black rattlesnakes (Crotalus cerberus) using association indices and social network analysis. I used remote timelapse cameras to semi-continuously sample rattlesnake behavior at communal basking sites during early April through mid-May in 2011 and 2012. I calculated an association index for each dyad (proportion of time they spent together) and used these indices to construct a weighted, undirected social network for each community. I found that individual C. cerberus vary in their tendency to form associations and are selective about with whom they associate. Some individuals preferred to be alone or in small groups while others preferred to be in large groups. Overall, rattlesnakes exhibited non-random association patterns, and this result was mainly driven by association selection of adults. Adults had greater association strengths and were more likely to have limited and selected associates. I identified eight subgroups within the two communities (five in one, three in the other), all of which contained adults and juveniles. My study is the first to show selected associations among individual snakes, but to my knowledge it is also the first to use association indices and social network analysis to examine association patterns among snakes. When these methods are applied to other snake species that aggregate, I anticipate the `discovery' of similar social structures.
ContributorsAmarello, Melissa (Author) / DeNardo, Dale F (Thesis advisor) / Sullivan, Brian K. (Committee member) / Schuett, Gordon W. (Committee member) / Arizona State University (Publisher)
Created2012
158568-Thumbnail Image.png
Description
Free-choice learning environments provide visitors with unique opportunities to observe and learn voluntarily and can serve as valuable educational opportunities. Incorporating interactive elements into displays have been shown to increase visitor dwell time and, ultimately, enhance the displays’ impacts on visitor knowledge and positive attitudes. This is especially important in

Free-choice learning environments provide visitors with unique opportunities to observe and learn voluntarily and can serve as valuable educational opportunities. Incorporating interactive elements into displays have been shown to increase visitor dwell time and, ultimately, enhance the displays’ impacts on visitor knowledge and positive attitudes. This is especially important in free-choice learning environments where the visitor controls what display to visit and for how long. Visitors may not benefit from the display if they are not engaged with some attention-holding component. Interactive elements can greatly benefit a display’s potential to strengthen a visitor’s conservation attitudes and values of non-charismatic species that are traditionally less engaging due to their lack of activity or their appearance. This study examined the effect of a self-guided display with or without the incorporation of interactive elements on a visitors knowledge, attitude, and value of rattlesnakes. In Spring 2019, university biology students took surveys before (pre-survey) and after (post-survey) visiting a live animal rattlesnake display on campus. This was repeated in the Fall 2019 except that eight interactive elements were incorporated into the rattlesnakes displays. The pre and post-surveys were designed to evaluate the effect of the displays on student knowledge, attitudes, and values towards rattlesnakes. Paired t-tests revealed that visiting the displays increased student knowledge, attitude, and value of rattlesnakes, but that this effect was not enhanced by adding the interactive elements to the display. The results also showed that visiting the displays increased visitor dwell time, positively influenced one’s interest in revisiting the displays, and, overall provided visitors with enjoyment. These results provide further evidence that self-guided, live animal displays are impactful on increasing visitor knowledge, attitude, and value. However, the results also demonstrate that interactive elements do not necessarily enhance a display’s value, so further research should be conducted to determine key traits of effective interactive elements. This data and that from future related studies can have powerful conservation implications by informing on how displays can be optimized to achieve desired objectives.
ContributorsTrussell, Danielle (Author) / DeNardo, Dale F (Thesis advisor) / Budruk, Megha (Committee member) / Wright, Christian (Committee member) / Arizona State University (Publisher)
Created2020
193653-Thumbnail Image.png
Description
As water is essential for survival, seasonal scarcity of freshwater resources can pose a challenge for many species. In xeric environments, efficient location of ephemeral water is crucial to capitalize on this rare, critical resource. Yet little is known about how organisms locate water, though it has been acknowledged that

As water is essential for survival, seasonal scarcity of freshwater resources can pose a challenge for many species. In xeric environments, efficient location of ephemeral water is crucial to capitalize on this rare, critical resource. Yet little is known about how organisms locate water, though it has been acknowledged that olfactory spatial navigation may benefit water searching in xeric-adapted species. Additionally, drinking behavior may be influenced by water salinity as consuming water with salinity levels that exceed blood osmolality can induce or exacerbate dehydration. To investigate whether animals can locate water via olfaction, whether salinity affects the amount of water consumed, and whether the extent of dehydration affects both processes, I conducted three experiments in a xeric-adapted reptile, the Gila monster (Heloderma suspectum). Two experiments used a T-maze to examine the effects of various olfactory cues and hydration state on spatial navigation to water resources, while the third experiment examined willingness to drink water of various salinity levels depending on the extent of dehydration. I found that Gila monsters accurately navigated to olfactory cues associated with aged tap water, but not other olfactory cues (pond water, geosmin/MIB, IBMP/IPMP). Increased extent of dehydration correlated with greater spatial navigation efficiency but did not meaningfully impact navigation accuracy. Moderately dehydrated Gila monsters selectively consumed water with lower salinity levels (freshwater, 1,250 ppm, and 2,500 ppm) and avoided highly saline water resources (10,000 ppm and 20,000 ppm). However, considerably dehydrated animals demonstrated an increased propensity to consume water with higher salinity levels. These results provide evidence for olfactory spatial navigation and selective consumption of saline water as strategies to locate water and efficiently osmoregulate in an osmotically challenging environment. These findings underscore the observed adaptable physiological and behavioral traits Gila monsters and other xeric-adapted species use to endure the seasonal water limitations.
ContributorsNorthrop, Victoria (Author) / DeNardo, Dale F (Thesis advisor) / Gerber, Leah R (Committee member) / Martins, Emilia P (Committee member) / Arizona State University (Publisher)
Created2024