This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

154645-Thumbnail Image.png
Description
The ability of microalgae to be mass cultivated and harvested for production of pharmaceuticals, nutraceuticals, and biofuels has made microalgae a focal point of scientific investigation. However, negative impacts on production are essentially inevitable due to the open design of many microalgae mass culture systems. This challenge generates

The ability of microalgae to be mass cultivated and harvested for production of pharmaceuticals, nutraceuticals, and biofuels has made microalgae a focal point of scientific investigation. However, negative impacts on production are essentially inevitable due to the open design of many microalgae mass culture systems. This challenge generates a need for the consistent monitoring of microalgae cultures for health and the presence of contaminants, predators, and competitors. The techniques for monitoring microalgae cultures are generally time-intensive, labor-intensive, and expensive. The scope of this work was to evaluate the use of Matrix-Assisted Laser Desorption/Ionization Time-of-Flight Mass Spectrometry (MALDI-TOF MS) as a viable alternative for the characterization of microalgae cultures. The studies presented here evaluated whether MALDI-TOF MS can be used to: 1) differentiate microalgae at the species and strain levels, 2) characterize simple mixtures of microalgae, 3) detect changes in a single microalgae culture over time, and 4) characterize growth phases of microalgae cultures. This research required the development of a MALDI-TOF MS microalgae analysis protocol for organism characterization. The results yielded in this research showed that MALDI-TOF MS was just as accurate, if not more so, than molecular techniques for the identification of microalgae at the species and strain levels during its logarithmic growth phase. Additionally, results suggest that MALDI-TOF MS is sensitive enough to characterize simple mixtures and detect changes in cultures over time. The data presented here suggests the next logical step is the development of protocols for the near-real time health monitoring of microalgae cultures and detection of contaminants using MALDI-TOF MS.
ContributorsBarbano, Duane (Author) / Sandrin, Todd (Thesis advisor) / Webber, Andrew (Committee member) / Dempster, Thomas (Committee member) / Arizona State University (Publisher)
Created2016