This collection includes most of the ASU Theses and Dissertations from 2011 to present. ASU Theses and Dissertations are available in downloadable PDF format; however, a small percentage of items are under embargo. Information about the dissertations/theses includes degree information, committee members, an abstract, supporting data or media.

In addition to the electronic theses found in the ASU Digital Repository, ASU Theses and Dissertations can be found in the ASU Library Catalog.

Dissertations and Theses granted by Arizona State University are archived and made available through a joint effort of the ASU Graduate College and the ASU Libraries. For more information or questions about this collection contact or visit the Digital Repository ETD Library Guide or contact the ASU Graduate College at gradformat@asu.edu.

Displaying 1 - 1 of 1
Filtering by

Clear all filters

Description
A big part of understanding cancer is understanding the cellular environment itthrives in by analyzing it from a microecological perspective. Humans and other species are affected by different cancer types, and this highlights the notion that there may be a correlation between specific tissues and neoplasia prevalence. Research shows that humans are the

A big part of understanding cancer is understanding the cellular environment itthrives in by analyzing it from a microecological perspective. Humans and other species are affected by different cancer types, and this highlights the notion that there may be a correlation between specific tissues and neoplasia prevalence. Research shows that humans are the most susceptible to adenocarcinomas and carcinomas which include the following tissues: lungs, breast, prostate, and pancreas. Furthermore, research shows that adenocarcinoma accounts for 38.5% of all lung cancer cases, 20% of small cell carcinomas, and 2.9% of large cell carcinoma. The incidence of the most common cancer types in humans is consistently increasing annually. This study analyzes trends of tissue-specific cancers across species to examine possible contributors to vulnerability to cancer. I predicted that adenocarcinomas would be the most prevalent cancer type across the tree of life. To test this hypothesis, I reviewed over 130 species that reported equal to or greater than 50 individual necropsy pathology records across 4 classes (Mammalia, amphibia, Reptilia, Aves) and ranked them by neoplasia prevalence. This information was then organized in tables in descending order. The study’s resulting tables and data concluded that the hypothesis was correct. I found that across all species adenocarcinomas were the most common cancer type and account for 30.4% of malignancies reported among species. Future research should investigate how organ size contributes to neoplasia prevalence.
ContributorsPERAZA, ASHLEY (Author) / Maley, Carlo (Thesis advisor) / Boddy, Amy (Thesis advisor) / Baciu, Cristina (Committee member) / Arizona State University (Publisher)
Created2022